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D3.3 Factory Knowledge for Cognition v1.1

Executive Summary

The main goal of this deliverable is to boost the cognition process (i.e., the management of
enhanced cognitive digital twins) with the factory knowledge, derived mainly in WP4,
required for the internal reasoning processes. One of the main challenges will be to
understand the role of process and domain knowledge in the cognition process formalized
in T3.1, leading to a completely new view on the factory knowledge and consequently on
the methods for processing and validating it. The main outcome is a set of interfaces for
accessing that knowledge. In addition, feedback about the validity of knowledge will be sent
as feedback to support the FACTLOG platform development.

In this deliverable, ontology and knowledge graph models are first investigated. Then
cognitive factory services and knowledge graph modelling are identified to provide all the
functionalities of knowledge graph models. Then ontology based on the BFO is introduced.
Based on the ontology, knowledge graph models are developed. Finally, the integration of
knowledge graph models and FACTLOG platform is demonstrated including three
approaches: 1) integration based on OWL models; 2) integration based on Neo4j; 3)
integration based on HTTP.
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1 Introduction

1.1 Purpose and Scope

This document refers to a technical report about ontology and knowledge definition in Task
3.3 and providing a guidance for defining all the entities and relations in the context of five
FACTLOG Pilots and technical partners about enhanced cognitive digital for factory.
Knowledge Graph Model (KGM) denotes a generic ontology representation and description
with all related product and equipment elements which is considered as a domain knowledge
defined in this report. The enhanced cognitive twins are developed based on Al methods,
algorithms, mechanisms, services and tools with knowledge graph models integrated into
an overall modelling application.

In each specialized FACTLOG use case, the enhanced cognitive digital twins are developed
based on related products, methods, algorithms and mechanisms with the knowledge graph
models which require a unified and high-level abstract ontology definition because of the
domain specific knowledge across different pilots. In the whole FACTLOG platform, the
knowledge graph models are used to describe the factory knowledge, the platform services
and their interrelationships. KGM is used to interconnect and interoperate with external Al
tools, Optimization tools, Analytics tools, data visualization tools, etc. These tools require to
develop the data interfaces based on the developed ontology for importing and exporting
knowledge graph models. According to specific cognition needs, the knowledge graph
models can be developed to implement reasoning to support anomaly detection.

The main content deals with the design and implementation of knowledge and development
of knowledge graph models for reasoning. To summarize, main objectives of this report are:

e Develop knowledge graph models based on a top-level ontology for cognition
services for analytic and dynamic models in the factory scenarios across FACTLOG
pilot;

e Provide a reasoning approach for anomaly detection and data analysis for factory
scenarios of FACTLOG.

¢ Anintegration approach based on Neo4j is introduced to demonstrate how FACTLOG
platform is integrated with knowledge graph models to support decision-making.

1.2 Relation with other Deliverables

D2.1 is the input of this deliverable for pilot information.

D3.1 is the input of this deliverable for Enhanced Cognitive Twin definition.
D4.2 is an important reference of this deliverable for ontology definition.

D8.3 is the input of this deliverable for knowledge graph modelling specification.
1.3 Structure of the Document

Section 2 introduces the background of ontology, semantic modelling and knowledge graph
modelling. Section 3 introduces the cognitive factory services and knowledge graph models.
Section 4 introduces FACTLOG ontology based on BFO for knowledge graph modelling.
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Section 5 introduces the knowledge graph models which are developed based on FACTLOG
ontology. Section 6 introduces integration of knowledge graph models and cognition
services in FACTLOG platform. Section 7 offers conclusions.
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2 Ontology for knowledge definition about factory

2.1 Ontology Engineering and Semantic Modelling
2.1.1 Ontology Engineering

Ontology engineering is the general term of methodologies and methods for building
ontologies. Ontology engineering refers to “The set of activities that concern the ontology
development and the ontology lifecycle, the methods and methodologies for building
ontologies and the tool suites and languages that support them”. The results of ontology
engineering provide domain knowledge representation to be reused efficiently and prevent
waste of time and money which are usually caused by non-shared knowledge. It helps
Information Technology (IT) to operate with interoperability and standardization.

Ontology represents the nature of being, becoming, existence, and so on in the way of
philosophy. One of the most well-known is: “ontology is an explicit, formal specification of a
shared conceptualization of a domain of interest” [12].

Ontology represents the following ideas together [17]:

= Semantic modelling can help defining the data and the relationships between
entities.

= An information model provides the ability to abstract different kind of data and
provides an understanding of how the data elements are related.

= A semantic model is a type of information model that supports the modelling of
entities and their relationships.

= The total set of entities in our semantic model comprises the taxonomy of classes
we use in our model to represent the real world.

2.1.2 Semantic Modelling

The main objective of semantic modelling techniques is to define the meaning of data within
the context of its correlation, and to model the domain world in the abstract level. The
benefits of exploiting semantic data models for business applications are mainly as follows:

= Avoiding misunderstanding: by providing a clear, accessible, agreed set of
terms, relations as a trusted source and discussions, misunderstandings can easily
be resolved.

= Conduct reasoning: by being machine-understandable and through the usage of
logic statements (rules), ontologies enable automatic reasoning and inference
which leads to the automatic generation of new and implicit knowledge.

= Leverage resources: by extending and relating an application ontology to external
ontological resources, via manual or automatic mapping and merging processes,
the need for repetition of entire design process for every application domain is
eliminated.

= Improve interoperability: semantic models can serve as a basis for schema
matching to support systems’ interoperability in close environments where systems,
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tools and data sources have no common recognition of data type and relationships.

2.1.3 Basic Ontology Concepts

Ontologies provide formal models of domain knowledge exploited in different ways.
Therefore, ontology plays a significant role in many knowledge-intensive applications.
Depending on corresponding languages, a number of different knowledge representation
formalisms exist.

Ontologies provide formal models of domain knowledge exploited in different ways.
Therefore, ontology plays a significant role for many knowledge-intensive applications.
Depending on corresponding languages, a number of different knowledge representation
formalisms exist. However, they share a minimal set of components as follows:

Classes represent concepts, which are taken in a broad sense. For instance, in the
Product Lifecycle domain, concepts are: Life Cycle phase, Product, Activity,
Resources, Even, and so on. Classes in ontology are usually organized in
taxonomies through which inheritance mechanisms can be applied.

Relations represent a type of association between concepts of the domain. They are
formally defined as any subset of a product of n sets, thatis: R c C1 x C2 x ... x Cn.
Ontologies usually contain binary relations. The first argument is known as the
domain of the relation, and the second argument is the range.

Formal axioms serve to model sentences that are always true. They are normally
used to represent knowledge that cannot be formally defined by the other
components. In addition, formal axioms are used to verify the consistency of the
ontology itself or the consistency of the knowledge stored in a knowledge base.
Formal axioms are very useful to infer new knowledge.

For instance, Energy Efficiency at Buildings domain could be that it is not possible to build
a public building without a fire door (based on legal issues).

Instances are used to represent elements or individuals in an ontology.

As a Design Rationale (DR), ontology can be used as follows [6]:

Level 1: Used as a common vocabulary for communication among distributed agents.
Level 2: Used as a conceptual schema of a relational database. Structural information
of concepts and relations among them is used. Conceptualization in a database is
nothing other than conceptual schema. Data retrieval from a database is easily done
when there is an agreement on its conceptual schema.
Level 3: Used as the backbone information for a user of a certain knowledge base.
Levels higher than this plays role of the ontology, which has something to do with
“content".
Level 4: Used for answering competence questions.
Level 5: Standardization

o Standardization of terminology (at the same level of Level 1)

o Standardization of meaning of concepts

o Standardization of components of target objects (domain ontology).

o Standardization of components of tasks (task ontology)
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Level 6: Used for transformation of databases considering the differences of the
meaning of conceptual schema. This requires not only the structural transformation
but also semantic transformation.

Level 7: Used for reusing knowledge of a knowledge base using DR information.
Level 8: Used for reorganizing a knowledge base based on DR information.

2.2 Semantic Modelling Languages

Several semantic modelling languages are developed to support ontology definition and
semantic modelling.

XML-based Ontology Exchange Language: The US bioinformatics community
designed XOL for the exchange of ontology definitions among a heterogeneous set
of software systems in their domain. Researchers developed it after studying the
representational needs of experts in bioinformatics. They selected Ontolingua (a Tool
for Collaborative Ontology Construction) and OML as the basis for creating XOL,
merging the high expressiveness of OKBC-Lite, a subset of the Open Knowledge
Based Connectivity protocol, and the syntax of OML, based on XML. There are no
tools that allow the development of ontologies using XOL. However, since XOL files
use XML syntax, we can use an XML editor to author XOL files.

Simple HTML Ontology Extension: SHOE is a small extension to HTML which
allows web page authors to annotate their web documents with machine-readable
knowledge. SHOE makes real intelligent agent software on the web possible. HTML
was never meant for computer consumption; its function is for displaying data for
humans to read. The "knowledge" on a web page is in a human-readable language
(usually English), laid out with tables and graphics and frames in ways that we as
humans comprehend visually. Unfortunately, intelligent agents aren't human. Even
with state-of-the-art natural language technology, getting a computer to read and
understand web documents is very difficult. This makes it very difficult to create an
intelligent agent that can wander the web on its own, reading and comprehending
web pages as it goes. SHOE eliminates this problem by making it possible for web
pages to include knowledge that intelligent agents can actually read.

Ontology Markup Language: OML, developed at the University of Washington, is
partially based on SHOE. In fact, it was first considered an XML serialization of
SHOE. Hence, OML and SHOE share many features. Four different levels of OML
exist: OML Core is related to logical aspects of the language and is included by the
rest of the layers; Simple OML maps directly to RDF(S); Abbreviated OML includes
conceptual graphs features; and Standard OML is the most expressive version of
OML. We selected Simple OML, because the higher layers don’t provide more
components than the ones identified in our framework. These higher layers are tightly
related to the representation of conceptual graphs. There are no other tools for
authoring OML ontologies other than existing general-purpose XML edition tools.
Ontology Interchange Language: OIL, developed in the OntoKnowledge project
(www.ontoknowledge.org/OIL), permits semantic interoperability between Web
resources. Its syntax and semantics are based on existing proposals (OKBC, XOL,
and RDF(S)), providing modelling primitives commonly used in frame-based
approaches to ontological engineering (concepts, taxonomies of concepts, relations,
and so on), and formal semantics and reasoning support found in description logic
approaches (a subset of first order logic that maintains a high expressive power,
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together with decidability and an efficient inference mechanism). OIL, built on top of
RDF(S), has the following layers: Core OIL groups the OIL primitives that have a
direct mapping to RDF(S) primitives; Standard OIL is the complete OIL model, using
more primitives than the ones defined in RDF(S); Instance OIL adds instances of
concepts and roles to the previous model; and Heavy OIL is the layer for future
extensions of OIL. OILEd, Protégé2000, and WebODE can be used to author OIL
ontologies. OIL’s syntax is not only expressed in XML but can also be presented in
ASCII. We use ASCII for our examples.

e DARPA Agent Markup Language+OIL: DAML+OIL has been developed by a joint
committee from the US and the European Union (IST) in the context of DAML, a
DARPA project for allowing semantic interoperability in XML. Hence, DAML+OIL
shares the same objective as OIL. DAML+OIL is built on RDF(S). Its name implicitly
suggests that there is a tight relationship with OIL. It replaces the initial specification,
which was called DAML-ONT, and was also based on the OIL language. OILEd,
OntoEdit, Protégé2000, and WebODE are tools that can author DAML+OIL
ontologies.

e OWL: OWL is the result of the work of the W3C Web Ontology Working Group. This
language derived from DAML+OIL and, as the previous languages, is intended for
publishing and sharing ontologies in the Web. OWL is built upon RDF(S), has a
layered structure and is divided into three sublanguages: OWL Lite, OWL DL and
OWL Full. OWL is grounded on Description Logics and its semantics are described in
two different ways: as an extension of the RDF(S) model theory and as a direct model-
theoretic semantics of OWL. Both of them have the same semantic consequences
on OWL ontologies.

e OWL 2: OWL 2 is an extension and revision of OWL that adds new functionality with
respect to OWL; some of the new features are syntactic sugar (e.g., disjoint union of
classes) while others offer new expressivity. OWL 2 includes three different profiles
(i.,e., sublanguages) that offer important advantages in particular application
scenarios, each trading off different aspects of OWL's expressive power in return for
different computational and/or implementation benefits. These profiles are:

e OWL 2 EL: Itis particularly suitable for applications where very large ontologies are
needed, and where expressive power can be traded for performance guarantees.

e OWL 2 QL: It is particularly suitable for applications where relatively lightweight
ontologies are used to organize large numbers of individuals and where it is useful or
necessary to access the data directly via relational queries (e.g., SQL).

e OWL 2 RL: It is particularly suitable for applications where relatively lightweight
ontologies are used to organize large numbers of individuals and where it is useful or
necessary to operate directly on data in the form of RDF triples. OWL 2 ontologies:
The Direct Semantics that assigns meaning directly to ontology structures and the
RDF- Based Semantics that assigns meaning directly to RDF graphs.

e Resource Description Framework and RDF Schema: RDF, developed by the W3C
for describing Web resources, allows the specification of the semantics of data based
on XML in a standardized, interoperable manner. It also provides mechanisms to
explicitly represent services, processes, and business models, while allowing
recognition of nonexplicit information. The RDF data model is equivalent to the
semantic networks formalism. It consists of three object types:

v" Resources are described by RDF expressions and are always named by URIs

plus optional anchor IDs
v Properties define specific aspects, characteristics, attributes, or relations used
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to describe a resource
v/ Statements assign a value for a property in a specific resource (this value
might be another RDF statement)

The RDF data model does not provide mechanisms for defining the relationships between
properties (attributes) and resources—this is the role of RDFS. RDFS offers primitives for
defining knowledge models that are closer to frame-based approaches. RDF(S) is widely
used as a representation format in many tools and projects, such as Amaya, Protégé,
Mozilla, SilRI, and so on.

According to W3C, RDF model has advantages as follows:

e The RDF model is made up of triples: as such, it can be efficiently implemented and
stored; other models requiring variable-length fields would require a more cumbersome
implementation

e The RDF model is essentially the canonicalization of a (directed) graph and has all the
advantages (and generality) of structuring information using graphs

e The basic RDF model can be processed even in absence of detailed information (an
"RDF schema") on the semantics: it already allows basic inferences to take place,
since it can be logically seen as a fact basis

e The RDF model has the important property of being modular

The union of knowledge (directed graphs) is mapped into the union of the corresponding
RDF structures. Since RDF is a standard model for data interchange and is a W3C
recommendation designed to standardize the definition and use of metadata-descriptions of
Web-based resources, it is well suited to representing data. As knowledge representation,
when it comes to semantic interoperability, RDF has significant advantages: The object-
attribute structure provides natural semantic units because all objects are independent
entities. A domain model—defining objects and relationships—can be represented naturally
in RDF. To find mappings between two RDF descriptions, techniques from research in
knowledge representation are directly applicable. Therefore, the Z-BRE4K ontology has
been implemented in the RDF format.

2.3 Knowledge Graph Modelling

From several academic papers, we found different researchers and companies have
proposed many different definitions. To synthesize a coherent definition that helps frame the
discussion about KGs, the definitions in references ([8], [13], [5], [7], [14], [18], [2], [10], [4])
were reviewed. They had the following common features:

1. A KG represents interrelationships. All of the definitions specify this feature but do so
in different ways.

2. A KG uses techniques to extract knowledge from one or more sources. The kinds of
sources differ from one definition to another.

3. The organization is a graph, although the precise meaning of "graph” varies from one
definition to another.

4. While a KG must have a schema, not all KG definitions mention it. Those that do
mention it specify that the schema defines classes and relations.

5. The KG supports various graph-computing, search, and query interfaces. The
supported operations and performance will vary, and the performance will depend on
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how trade-offs among scalability, performance, and maintainability are handled as well
as on other technical issues.

From these features it is apparent that a KG is not simply another way to represent facts. It
involves a software architecture that includes active capabilities for extracting and
processing the facts. Jans Aasman [1] characterized the operations of a KG as follows:
e Generation:
o Collection: Ingestion, web extraction, catalogue extraction, ontology, ...
o Processing: Schema mapping, entity resolution, cleaning, ...

e Storage
e Applications: Querying, graph mining, recommendation, search, question
answering, ...

e Statistical and machine learning techniques are used for all of the above
Accordingly, these lead to the following proposal for a definition of a KG:

A KG is a representation of a set of statements in the form of a node- and edge-labelled
directed multigraph allowing multiple, heterogeneous edges for the same nodes. A collection
of definitional statements specifying the meaning of the knowledge graph's labels is called
its schema.

In common, different graph database can support knowledge graph modelling which
enables to integrate with 10T platform, such as Neo4j [9].

2.4 Semantic Reasoning based on Knowledge Graph Models

Based on knowledge graph models, semantic reasoning is the ability to infer new facts from
existing knowledge graph data based on inference rules or ontologies. In simple terms, rules
add new information to the existing knowledge graph models, adding context, knowledge,
and valuable insights. The rules are declarative in nature that declare the desired logic of
connections in the knowledge graph models and the process of inferring new facts happens
either through pre-materialization, query rewriting or a combination of both.

Reasoning enables to manage consistent among knowledge graph models and speed up
the intelligent services by minimizing the amount of information processing that needs to
happen outside your database’s reasoning engine, as well as the number of required
operations. It also brings analysis closer to the knowledge graph models, meaning deeper
insights can be gathered from a given knowledge graph model with far less computational
effort.

A semantic reasoning engine (otherwise known as a semantic reasoner, inference engine,
or rules engine) is a piece of software designed to perform reasoning—to apply rules to a
knowledge graph model and conduct semantic inference as we’ve described. The semantic
reasoning tools includes, SQWRL engine [11], SWRL engineer [16], etc.

2.5 Summary and Motivation

In summary, knowledge graph models are always developed based on semantic modelling
languages. When developing knowledge graph models, ontology is used to support
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specification definition of different knowledge graph model elements. Through the ontology,
different domain specific knowledge can be integrated into a unified framework.
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3 Cognitive Factory Services and KGM

In this section, cognitive factory twins based on knowledge graph models are introduced.
Then the function of knowledge graph models in FACTLOG factory scenarios are
demonstrated in Section 3.2.

3.1 Cognitive Factory Twins based on Knowledge Graph Models

A -
DEVELOP ".@ o ¢ % ¢

FORMALIZE oo
Factlog Factory Ontology KNOWI\I}I%)DGEELSGRAPH
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Algorithm

Figure 1: Knowledge graph models and cognition services to FACTLOG factory [15]

As shown in Figure 1, the interrelationships among FACTLOG factories and knowledge
graph models are shown:

FACTLOG factory provides data to cognition services.

Ontology formalizes FACTLOG factory.

Ontology is used to develop knowledge graph models.

Knowledge graph models, algorithm and data are used to develop cognition services.
The cognition services control FACTLOG factory.

RO

3.2 The functions of Knowledge Graph Models in FACTLOG Factory
scenario

The functions of knowledge graph models in the FACTLOG factory scenarios are listed:

e Unified description of digital twins and information across FACTLOG platform

e Anomaly detection for cognition
e Visualization of the interrelationships of all the ontology entities and individuals
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4 Ontology definition for KGM

4.1 Guidance to KGM for cognition services of factory
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Figure 2: Scenario Overview -A: System of systems perspective; -B: Operational view.

In order to understand how the knowledge graph models, support the formalism of
FACTLOG factory, an example is demonstrated as follow:

One scenario is proposed to develop a tutorial of knowledge graph modelling. The scenario
is about a shop-plant. In Figure 2-A, the system of systems view is introduced. A production
plants (plantl) is located in site (Lausanne). The plantl includes two production lines (linel
and line2). Two workers (workerl and worker2) work in linel. They are in Groupl which
competence is OrganizationComplLevell. The workerl has senior competence and worker2
has junior competence. Three workers (worker3, worker4 and worker5) work in line2. They
are in Group2 which competence is OrganizationCompLevel2. They have the same person
competence: semi-senior. Machinel and Machine2 are implemented in linel. Machine3 and
Machine4 are implemented in line2. In linel, process stock(processlstock) is implemented.
The processlstock has two input process stocks (materiall and material2) and two output
process stocks (productl and product?2). The linel has competences: PLCompetentl and
PLCompetent2 which produce productl and product2. In line2, process
stock(process2stock) is implemented. The process2stock has two input process stocks
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(materiall and material2) and two output process stocks (productl and product3). The line2
has competences: PLCompetentl and PLCompetent3 which produce productl and

product3.

As shown in Figure 2-B, the operational view is illustrated. When the development process
starts, order (orderl) triggers the processl and order (order?2) triggers the process2. The
processl is monitored and controlled by the algorithml in softwarel. The algorithml
provides actionl to control machinel. The machinel and_machine2 generate data which
provided to softwarel. The process2 is monitored and controlled by the algorithm2 in
software2. The algorithm2 provides action2 to control machine2. The machine3 and
machine4 generate data which provided to software?2.

4.1.1 Knowledge Graph Modelling
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Figure 3: Knowledge graph models -A: Class; -B: Object property; -C: Data property; -Individuals.

Based on the scenario, knowledge graph model is developed in protégé. The class refers to
meta-concepts used in the scenario, for example, production line. Then the individuals of
production line class are defined to represent linel and line2.0bject properties are used to
represent the relationships between classes. For example, product plant (class) contains
product line (class). Then as shown in Figure 4, the relationship rules are defined with object
properties and another class. When developing the KG models for the scenario, each
individual is connected by object property. The data property is used to define attributes of
each individual and class.

v eFACT 20,



D3.3 Factory Knowledge for Cognition v1.1

comtain some ‘production line’
located_in some ‘industrial plant site”

A: Class

J Froperty assertions. plant1
= ocated_in Lausanne

= contain Ene2
= contain Enet

B: Individuals

Figure 4 Define relationship rules between classes

4.1.2 Reasoning for the scenario
4.1.2.1 Reasoning using SQWRL

SQWRL (Semantic Query-Enhanced Web Rule Language; pronounced squirrel) is a SWRL-
SQL-like operators for extracting information from OWL
ontologies, https://github.com/protegeproject/swrlapi/wiki/'SOWRL. The SQWRL is used to

based query language that provides

reasoning the knowledge graph model in order to get the answer you want. In the scenario,
when we finish the knowledge graph models, we want to know how many product lines

operate production process. The SQWRL is defined as follow:

production_line(?PL) " op

erate(?PL, ?IP) ~ Production_Process(?IP) ->

sqwrl:select(?PL, ?IP)

Then the reasoning is implemented

as Figure 5. The results are obtained in protégé.

Status
Ok

adudion line(?PL)* aperabs

Find production line which operaies indusirial process

(7PL. 7IP)* Produdion_Process(MP) -» Sqwrlseled?PL. 7IP)|

A:SQWRL

Cancel Ok

L
FaciLog_BFO
FaciLog_BFO

SOWHL Queries OWLZEL 51

el
nez

Facl g BFOProcess
Factl eg_BFO-Frocess?

B:Reasoning result

Figure 5: Reasoning results

4.1.2.2 Query using SPARQL

SPARQL contains capabilities for querying required and optional graph patterns along with
SPARQL also supports extensible value testing and
constraining queries by source RDF graph. The results of SPARQL queries can be results
org/TR/rdf-spargl-query/ . The SPARQL is also used to

their conjunctions and disjunctions.

sets or RDF graphs https://www.w3.
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guery the knowledge graph models built by protégé. The query is implemented in twinkle. If
we want to know how many workers, we have in the knowledge graph models and what are
their own capabilities, we make use of the SPARQL as follow:

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

PREFIX sp: <http://purl.obolibrary.org/obo/FACTLOG.owl#>

SELECT ?worker ?competency

WHERE{

?worker <http://purl.obolibrary.org/obo/bfo.owl#belong_to> ?competency

{ ?worker rdf:type sp:person}

}

| £ sparqlExample

@ Save [> Run @ Cancel

Base URI

Data URL file:/F:/Post-doc% 20epfl/ project/Factlog/ontology/Factlog.owl

e

File...

PREFIX owl: <http://www.w3.org/2002/07/owls>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax—ns&>
PREFIX xsd: <http://www.w3. org/2001/XMLSchema®>

PREFIX sp: <http://purl.obelibrary. org/obo/Factlog. owl#>

SELECT ?worker ?competency
WHERE {

{ ?worker rdf:type sp:person}

2worker <http://purl. obolibrary. org/obo/bfo. owl#tbelong_to>» ?competency

worker

http://purl.obolibrary.org/obo/FactLog_BFO.owl#worker5

competency

http://purl.obolibrary.org/obo/FactLog_BFO.owl#semi-senior

http://purl.obolibrary.org/obo/FactLog_BFO.owl#worker2

http://purl.obolibrary.org/obo/FactLog_BFO.owl#junior

http://purl.obolibrary.org/obo/FactLog_BFO.owl#worker1

http://purl.obolibrary.org/obo/FactLog_BFO.owl#senior

http://purl.obolibrary.org/obo/FactLog_BFO.owl#worker3

http://purl.obolibrary.org/obo/FactLog_BFO.owl#semi-senior

http://purl.obolibrary.org/obo/FactLog_BFO.owl#worker4

http://purl.obolibrary.org/obo/FactLog_BFO.owl#semi-senior

text table

Figure 6: Reasoning results

4.1.2.3 Lessons learned from the Guidance

The ontology models enable to provide a unified description of the entire FACTLOG factory.
Through some reasoning approaches, the knowledge graph model can support decision-
makings for the FACTLOG services, such as identifying workers’ skill through query.
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4.2 FACTLOG Ontology developed for KGM in FACTLOG

4.2.1 Principles

Entities in the FACTLOG semantic framework have been arranged based on the Basic
Formal Ontology (BFO) which is a formal ontology framework developed by Barry Smith
and his associates [3]. In BFO, there are two varieties which are continuants
comprehending continuant entities such as three-dimensional enduring objects and
occurrent comprehending processes conceived as extended through (or as spanning)
time. To adopt BFO framework will provide availability to merge the other CT domain
ontology structured by BFO.

Originated from BFO, ontology design principles of FACTLOG are as follows:

= use single nouns (except data) and avoid acronyms

= ensure unicity of terms and relational expressions

= distinguish the general from particular

= provide all non-root terms with definitions

= use essential features in defining terms and avoid circularity

= start with the most general terms in the domain

= use simpler terms than the term you are defining (to ensure intelligibility)
= do not create terms for universals through logical combination

= structure ontology around is_a hierarchy and ensure is_a completeness
= single inheritance

SAEmSS . -

= / | o 1 AP
o Process modeling  eptimization Dataanalyss  Anomaly C= = B4
Pilot information Domain knowledge detection | "~ ontology Ontology  Ontology

Reference ontology

Unified description of digital twins and

information across FACTLOG platform

Define all the entities in the scope

Alignment to Basic Formal Ontology
% i - Anomaly detection for cognition
Factlog ontalogy

Visualization of the interrelationships of

¥4 all the ontology entities and individuals

SQWRL Seasoning ‘ ‘ Visualization SPARQL Query ‘

Figure 7: Ontology development workflow

In order to design the unified ontology for developing knowledge graph models supporting
cognitive capabilities, the one of the well- known systems thinking development methodology
(D 8.3) through domain knowledge has been applied to define the domain knowledge
including: (i) pilot information; (ii) process modelling; (iii) optimization; (iv) data analysis;
(v) anomaly detection. IoF ontology, BFO ontology and IoF SE ontology are three main
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reference ontology. By composing a top-level overview, abstract concepts form domain
specific knowledge from FACTLOG pilots and technical views. After the extraction of
entities from FACTLOG pilots, the list of classes was updated in a comparison with
existing ontology such as IOF-SE ontology, and IOF ontology. And then, all the entities
were rearranged in the BFO structure. Finally, the SQWRL and SPARQL are used to
support reasoning and query of the OWL models.

All the ontology concepts are manly used for three aspects:

1. Unified description of digital twin and information across the FACTLOG platform.
2. Ontology reasoning for anomaly detection.
3. Visualization of the interrelationships of all the ontology entities and individuals.

4.2.3 Ontology Framework
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Figure 8: Ontology framework based on BFO

As shown in Figure 8, the FACTLOG ontology is developed based on basic formal ontology.
The red blocks refer to BFO and lIoF concepts. The purple blocks refer to domain concepts.
The blue ones which are defined under BFO and domain concepts are used to define
FACTLOG concepts. The whole entire FACTLOG entities include occurrent and
continuent entity.

e A continuant is an entity that persists, endures, or continues to exist through time
while maintaining its identity.

e Anoccurrent is an entity that unfolds itself in time or it is the instantaneous boundary
of such an entity (for example a beginning or an ending) or it is a temporal or
spatiotemporal region which such an entity occupies_temporal_region or
occupies_spatiotemporal_region.

Under the occurrent entity, several concepts are defined:

e Process: an occurrent that has temporal proper parts and for some time t, p s-
depends_on some material entity at t.

Process_boundary: a temporal part of a process & p has no proper temporal parts.
Service: Service is delivered when the service implements the system function.
Spatiotemporal_region: an occurrent entity that is part of spacetime.
Temporal_region: an occurrent entity that is part of time as defined relative to some
reference frame.
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Under the continuant entity, several concepts are defined:

e generically_dependent_continuant is a continuant that generally depends on one
or more other entities.

e independent_continuant, a continuant which is such that there is no ¢ and not such
that b s-depends_on c at t.

e specifically_dependent_continuant, a continuant & there is some independent
continuant ¢ which is not a spatial region and which is such that b s-depends_on c at
every time t during the course of b’s existence

Under generically_dependent_continuant entity, several concepts are defined:

e Information_content_entity, a generically dependent continuant that is about
something.

o Process_model_entity, a virtual concept used to define a process model.

o Optimization_entity , a virtual concept used to define an optimization concept.

o Simulation_model_entity, a virtual concept used to define simulation model
concepts.

o Pilot_parameter_concept, a virtual entity to define FACTLOG pilot
parameters.

= General sensor data, sensor data used for all the FACTLOG pilots

o Directive_information_entity , a plan specification that describes the inputs
and output of mathematical functions as well as the workflow of execution for
achieving a predefined objective. Algorithms are realized usually by means of
implementation as computer programs for execution by automata.

o Anomaly_entity, a virtual entity to support anomaly detection.

o Data_analysis_entity, a virtual entity used for data analysis.

e Specifically_dependent_continuant, is a continuant & there is some independent
continuant ¢ which is not a spatial region and which is such that b s-depends_on c at
every time t during the course of b’s existence

o Quality, a specifically dependent continuant that, in contrast to roles and
dispositions, does not require any further process in order to be realized.

= FACTLOG_BRC_quality_entity, quality used in the BRC pilot.

= FACTLOG_Continental _quality_entity, quality used in the CONT
pilot.

= FACTLOG_JEMS_ quality_entity, quality used in the JEMS pilot.

= FACTLOG_Piacenza_quality_entity, quality used in the PIA pilot.

= FACTLOG_TUPRAS_quality_entity, quality used in the TUPRAS
pilot.

o realizable_entity, a specifically dependent continuant that exists essentially
or permanently in some independent continuant which is not a spatial region
and is of a type instance of which are realized in processes of a correlated
type.

= Disposition, a realizable entity & b’s bearer is some material entity &

b is such that if it ceases to exist, then its bearer is physically changed,

& b’s realization occurs when and because this bearer is in some

special physical circumstances, & this realization occurs in virtue of the
bearer’s physical make-up.

e Function, a disposition that exists in virtue of the bearer’s

physical make-up and this physical make-up is something the
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bearer possesses because it came into being, either through
evolution (in the case of natural biological entities) or through
intentional design (in the case of artifacts), in order to realize
processes of a certain sort.

o FACTLOG_continental_function_entity, functions
used in CONT pilot.

* Role, arealizable entity & b exists because there is some single bearer
that is in some special physical, social, or institutional set of
circumstances in which this bearer does not have to be& b is not such
that, if it ceases to exist, then the physical make-up of the bearer is
thereby changed.

e Independent_continuant, a continuant which is such that there is no c and no t such
that b s-depends_on c at t.

o immaterial_entity, which are divided into two subgroups: boundaries and
sites, which bound, or are demarcated in relation, to material entities, and
which can thus change location, shape and size and as their material hosts
move or change shape or size (for example: your nasal passage; the hold of
a ship; the boundary of Wales.

= Site, three-dimensional immaterial entity that is (partially or wholly)
bounded by a material entity or it is a three-dimensional immaterial part
thereof.

e BRC_site, site used in BRC.
e Continental_site, site used in CONT.
e TUPRAS site, site used in TUPRAS.

o material_entity, which can preserve their identity even while gaining and
losing material parts. Continuants are contrasted with occurrents, which unfold
themselves in successive temporal parts or phases.

= Object, a material entity which manifests causal unity of one or other
of the types CUn listed above & is of a type (a material universal)
instance of which are maximal relative to this criterion of causal unity.

e Artifact, an Object that was designed by some Agent to realize a
certain Function.

o Sensor, a device that produces an output signal for the
purpose of sensing of a physical phenomenon.

o Processing stock, is an artifact in an industrial site
corresponds to any material in the process of producing
or manufacturing finished product.

o Machine component, compositions for constructing
machines.

o Machine, a physical system using power to apply forces
and control movement to perform an action.

o Equipment, the set of physical resources serving to
equip a person or thing implementing used in an
operation or activity

e Person, an object that is a human being.

= Object_aggregate, an object aggregates if and only if there is a
mutually exhaustive and pairwise disjoint partition of a into objects.

e Artifact_aggregate, a collection of artifacts that designedor
aranged by some Agent to realize a certain Function.
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©)

BRC _unit, a company group generally equivalent in size
and character to implement BRC services.
Continental_unit, a company group generally equivalent
in size and character to implement CONT services.
JEMS unit, a company group generally equivalent in
size and character to implement JEMS services.
Piacenza_unit, a company group generally equivalent in
size and character to implement PIA services.

TUPRAS unit, a company group generally equivalent in
size and character to implement TUPRAS services.

e Organization, an object aggregate that corresponds to social
institutions such as companies, societies etc. that does
something.

o

Department, an organizational unit in FACTLOG.

4.3 Ontology for each Pilot and Technical Partner

Based on the ontology framework, ontology for each pilot and technical partners is designed
in each deliverable as shown in Table 1.

Table 1 — Mapping between ontology concepts and other deliverables

Ontology concepts

Deliverable Description

Ontology for
Directive_information_entity

Deliverable 4.2 | Ontology which describes the general

information concepts in FACTLOG.

Ontology for Pilot
Description

Deliverable 4.2 | Ontology which describes the pilot

concepts in FACTLOG.

Ontology for Optimization

Deliverable 4.2 | Ontology = which  describes the

optimization concepts in FACTLOG.

Ontology for Processing
Modeling

Deliverable 4.2 | Ontology which describes the process

model concepts in FACTLOG.

Ontology for Data Analysis

Deliverable 4.4 | Ontology which describes the concepts

of data analysis in FACTLOG.

Ontology for Simulation
Model

Deliverable 4.2 | Ontology which describes the concepts

of simulation models in FACTLOG.
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4.4 Ontology for Anomaly Detection

The ontology concepts are defined to support anomaly detection in FACTLOG pilot.

Anomaly detection process

fault

Generate FaultStatus

Sensor Data
I Provide Reference Data

Machine, Process

Figure 9: Ontology for describing anomaly detection processes

As shown in Figure 9, several concepts are defined to describe the anomaly detection

process.

1. A service is defined as what is delivered when the service implements the system
function.

2. Aservice failure, often abbreviated here as failure, is an event that occurs when the
delivered service deviates from correct service.

3. An error is the deviation that at least one (or more) external state of the system
deviates from the correct service state, since a service is a sequence of the system’s
external states.

4. A fault is an adjudged or hypothesized cause of an error.

5. An observation of a fault is fault status.

6. Sensor data refers to the data directly generated from machine or sensor.

7. Reference data refers to the data from simulation models for decision-makings.
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Figure 10: Ontology classes for describing anomaly detection processes

As shown in Figure 10, ontology classes are defined based on the Figure 9.
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5 Knowledge Graph Modelling based on FACTLOG Ontology
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Figure 11: Knowledge graph models based on developed ontology

As shown in Figure 11, knowledge graph models are developed based on the ontology in
Section 4. Details are shown in Deliverable 4.2.

5.1 Knowledge Graph Modelling for BRC

In the BRC pilot, four main concerns are first considered when knowledge graph models are
developed to formalize the BRC pilot: 1) pilot description; 2) PN model formalism; 3)
optimization formalism; 4) anomaly detection (introduced in Section 6.4.1.2).

5.1.1 Pilot description
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Figure 12: Ontology class, object property and individuals for BRC pilot description

As shown in Figure 12, BRC process entities, BRC services, BRC sites, BRC pilot
parameter, BRC machine, BRC unit and BRC input process stock are the main ontology
concepts defined in the knowledge graph models. General specific object properties are
defined in order to support all the pilot description. Individuals are defined to describe an
example of the BRC scenario.
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5.1.2 PN model formalism
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Figure 13: Ontology class.-

onnection in Process models

=S

Components in Process models

object property and individuals for simulation in BRC pilot description

As shown in Figure 14, classes of petri net model entities and object properties of petri net
model connections are defined to describe the petri net model used in the BRC pilot. The
PN node entities are used to represent the “model compositions” in the petri net model. The
PN connection entities are used to represent the model connections in the petri net model.
PN_connectingFrom and PN_connectingTo are used to connect the PN connections and
PN nodes. Through this way, the entire PN model is described.

5.1.3 Optimization formalism
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Figure 14: Ontology class, object property, data property and individuals for optimization for BRC pilot

As shown in Figure 14, optimization classes, object properties and data properties are
defined to represent optimization scenario using individuals. In Figure 15, the individuals are
used to represent the optimization input data structure. The BRC optimization input has a

machine named “2KRBMINI” who has a machine id as 2-KRBMINI.
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Figure 15: Individuals for describing the optimization scenario for BRC pilot
5.2 Knowledge Graph Modelling for PIA

In the PIA pilot, three concerns are first considered when knowledge graph models are
developed to formalize the PIA pilot: 1) pilot description; 2) optimization formalism; 3)
anomaly detection (introduced in Section 6.4.1.3).

5.2.1 Pilot description
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Figure 16: Ontology class, object property and individuals for PIA pilot description

As shown in Figure 16, PIA process entities, PIA services, PIA pilot parameter, PIA machine,
PIA unit, PIA input process stock and PIA output process stock are the main ontology
concepts defined in the knowledge graph models. General specific object properties are
defined in order to support all the pilot description. Individuals are defined to describe an
example of the PIA scenario.
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5.2.2 Optimization formalism
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Figure 17: Ontology class, object property, data property and individuals for optimization for PIA pilot

As shown in Figure 17, optimization classes, object properties and data properties are
defined to represent optimization scenario using individuals. In Figure 18, the individuals are
used to represent the optimization input data structure. The PIA optimization output has an

order1 named “order1” who has a processing time and its value is 1991.79.
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Figure 18: Individuals for describing the optimization scenario for PIA pilot
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5.3 Knowledge Graph Modelling for JEMS

In the JEMS pilot!, two concerns are first considered when knowledge graph models are
developed to formalize the pilot: 1) pilot description; 2) anomaly detection (introduced in
Section Errore. L'origine riferimento non é stata trovata.).

5.3.1 Pilot description
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Figure 19: Ontology class, object property, data property and individuals for optimization for JEMS pilot

As shown in Figure 19, JEMS process entities, services, pilot parameter, sensor, JEMS unit,
quality, digital signal, unit, input process stock and output process stock are the main
ontology concepts defined in the knowledge graph models. General specific object
properties are defined in order to support all the pilot description. Individuals are defined to
describe an example of the JEMS scenario.

5.4 Knowledge Graph Modelling for TUPRAS

In the TUPRAS pilot, four main concerns are first considered when knowledge graph models
are developed to formalize the TUPRAS pilot: 1) pilot description; 2) PM model formalism;
3) optimization formalism; 4) Data analysis formalism.

1 JEMS pilot did not meet its objectives, especially with regards to the integration of the FACTLOG system to
its plant since there is not yet an operative plant in Slovenia.
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5.4.1 Pilot description
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Figure 20: Ontology class, object property, data property and individuals for pilot description in TUPRAS pilot

As shown in Figure 20, TUPRAS process entities, TUPRAS services, TUPRAS pilot
parameter, TUPRAS unit, TUPRAS quality, TUPRAS digital signal, TUPRAS site, TUPRAS
input process stock and TUPRAS output process stock are the main ontology concepts
defined in the knowledge graph models. General specific object properties are defined in
order to support all the pilot description. Individuals are defined to describe an example of

the TUPRAS scenatrio.

5.4.2 PM model formalism
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Figure 21: Individuals for process model description for TUPRAS pilot

Using the ontology in Section 5.4.2, the Figure 21 shows the individuals which are used to
represent model structure for TUPRAS. For example, the individuals of PM_links are used
to represent the connections among PM_nodes. The individuals of PM_nodes are used to

iy

=FACT.OC

34



D3.3 Factory Knowledge for Cognition v1.1

represent each model composition in the model. The model

represent the real equipment in the TUPRAS pilot.

5.4.3 Optimization formalism

composition is defined to

O e oy~ ato-enity - Tupes, ptinzatin St prgery ¥ W optmization_relsted_data_propoerty
Ic2_i I optimization_input_unit_scenaria_includa_enfity V- B Optimization_Tupras_data_property
b o optiizaton_nput incude_0S - - C2_value
InputNodeID I optimization_input inchude_PM - W C2C5_value
1SU_i izafion i ing enfi - C5_value

linkScenarios_related_entity .mm!M‘!"M“nwwm;“mdm'em -CAB ij_value
AP 1 I optimization_input_likScenario_including_entity WEE s value
link_id_is o s )

— u

PCzils opiizson,put 05 e i scenero = Found Solution_value
PC5.1 0 s I optimization_input_output fask_include_entity .. Horizon value
PF_iis PR _
PSUTLs I optimization_input_PI_include_outpurt fask C2_i_value

oplimization_input_Settings_related_entity I optmization_input_P_inchude_Settings - W IC5_i_value
H o
Horzon ety W gtimization_input_PI_inchude_specs - F_i_value
PriceOfLPG I optimization_input_setfing_include_enity - Il InputNodelD_value
PriceONG i
TimeToOptimize W optimization_inpot_specification_include._eatty | SU_i_value

- @ optimization_input_specs_related_entity T optimization_input_unit_Scenario_inciuding_iinkScenario W LinkID_value
o 8 ogiiaaion_oupu ncudng i ko eny = OptiD_value

cs 8 optimization_outpat inciuding_SolkPls : xg—u_—ﬁ—“:“e
e ation_output, I optinizaion_outpu_ incuding_Solton_Scanarios - f'stf"a ue
optiD - v @ tupras_optimization_output_data ' cgtimization_outpot including_otl_eneryy - _i_j_s_value
Scenario_ID v+ optimization_output_output_OutputkPls ' opimization npout Inciudi " - PSU_i_j_s_value
Solution ScenariosNode_ID 1@ optimization_output_output_C2C5perc Optmizztion_inpput_including_rou .. Q_start_i_value

Output_tanks_related_enti ‘optimization_output_output_C2perc W optmization i - i

> gl:u}m':c;’erue)a entiy optimization_output_output_C5perc - w!mf!mfmmmw B Q_total_i_value
Q_start_i optimization_output_output_OutputNodelD optmization_input 1 inciud inputFeed - WM QC2_start_i_value
optimization_output_output_Quantity izati W i

&‘;‘:‘m‘n ; *-- @ optimization_output_output_SUperc = W!M’MWI’FCMIUMucw’m’em -0 5_5tart_\._va lue
Qcs_starti ¥ optimization_output_output_SolKPls I opimization_output_including_uuid - WM QSU_start_i_value
QSU_start_i ""“'“"‘“"“i::g::f‘;::g::f"’“"“f‘°‘ ution W opimization_output_soluion_scenario_including_NodelD B ScenariolD_i_s_value

® - onarios_relafed_enfity i _output_output W ogiization_vutput_solution_scenario_including_0ptD - SU_value
Unit_Scenarios_id_is optimization_oufpul_oufput tofal_energy 8 opimizaton_ output_solution_scenario_including_Scenariold - TotalEnergy_value

_output_

narine Nadain

| Class

| Object property | |

Data property |

Figure 22: Ontology class, object property, and data property for optimization for TUPRAS pilot

As shown in Figure 23, optimization classes, object properties and data properties are
defined to represent optimization scenario using individuals. In Figure 28, the individuals are
used to represent the optimization output data structure. The TUPRAS optimization output

has a solKPlIs, solution scenario, outputKPls and etc.
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Figure 23: Individuals for optimization in TUPRAS pilot
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5.4.4 Data analysis formalism
v-- () data_id_entity_for_data_anaylsis
. @ controller_id_for_data_analysis

sensor_id_for_data_analysis

target_|d_for_data_analysis

¢ =00 unit_ld_for_data_analysis

1lr interelationships_for_data_analysis

: sequence_from_unit_to_unit

. WM TUPRAS_data_analysis_data_property

----- B ynit_id_mapping_to_unit

----- W ynit_id_include_target_id

----- B ynit_id_include_sensor_id

----- B ynit_id_include_control_id

----- B target_id_mapping_to_parameter

----- B sequence_to_unit

----- N sequence_from_unit

----- B sensor_id_mapping_to_sensor_data
----- B sensor_id_mapping_to_sensor

----- B control_id_| ing_to_parameter

—

¥ sarsorDataProparty
- '

- CEmEei el

LT

Class

Object property

Data property

Figure 24: Ontology class, object property, and data property for data analysis in TUPRAS pilot

As shown in Figure 24, optimization classes, object properties and data properties are
defined to represent data analysis scenario using individuals. In Figure 25, the individuals
are used to represent the data analysis scenario. The TUPRAS data analysis scenario has
a uuid which is mapping to the unit “crude distillation unit”.
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Figure 25: Individuals for data analysis in TUPRAS pilot

5.5 Knowledge Graph Modelling for CONT

In the CONT pilot, three main concerns are first considered when knowledge graph models
are developed to formalize the CONT pilot: 1) pilot description; 2) optimization formalism; 3)
anomaly detection (introduced in Section 6.4.1).
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5.5.1 Pilot description
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Figure 26: Ontology class, object property, data property and individuals for CONT pilot

As shown in Figure 26, CONT process entities, CONT services, CONT pilot parameter,
CONT site, CONT machine, and CONT function are the main ontology concepts defined in
the knowledge graph models. General specific object properties are defined in order to
support all the pilot description. Individuals are defined to describe an example of the CONT

scenario.

5.5.2 Optimization formalism
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Figure 27: Ontology class, object property, data property and individuals for optimization for CONT pilot

As shown in Figure 27, optimization classes, object properties and data properties are
defined to represent optimization scenario using individuals. In Figure 28, the individuals are
used to represent the optimization input data structure. The CONT optimization input has a

route named “prod-and-maint-sched” whose value is “prod-and-maint-sched”.
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Optimization input: CONT in
{

"route": "prod-and-maint-sched”,
"data™ {

"staticData": {
"WorkplaceTypes": [{

"Id": 38,

"Code": "ICT test",
"Description"; "ICT test"

}

ineTypes": [{
“Id": 1,
"Code™ "FA",
"Description": "FA"
},
1,

1,

& CONT_out !
& CONT_out_makespat

Ocm_mumucm_n}q\

@ CONT_out_stationideftime

& CONT_out_totaltardiness . “ . ”
@ cout_ouvun CONT-in has route “pro-and-maint-sched
& curingt \
@ depansiingl

@ final_assembly_line1

@ finalTestt

& hotAndColdTestt

& ict1

& laserMaking1

@ leakageTest1 e Inchvidunt As
Sine t — ..«_\

@ line_3 ~ == optimization_input_has_static_data resource
@ line_3_code Sfteret i = oplimization_inpul_has_static_data LineType_1
& line_3_descrption = optimization_input_has_stabic_data 1117_setup_time
: tine_3_id =optimization_input_has_static_data line_1
line_4

optimization_input_include_rounte prod-and-maint-sched
& o, —opimization nput_has._dynamic_data productorser_1
' LneTypat_cods " optmization_input_has_dynamic_data ScheduledMaintenanceActities!

~

operty assertions: CONT_in

optimization_input_has_static_data ProductBOM1
= optimization_input_has_static_data Productamilies
= optimization_inpul_has_static_data workspace_type_38

Route is valued as “pro-and-maint-sched”

& plasma_cieaning1

& PH_model_final_assembly_line

& preassymbing1

4 press_pin_checkt

& presstur

# processume1

# processume1_ideadprocesstine

@ processtme1_reaprgessstme
prod-and maint.sched

= route_value "prod-and-maint-sched™*"xsd:string

e

Figure 28: Individuals for describing the optimization scenario for CONT pilot
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6 Integration of KGM and Cognition Services in the FACTLOG
platform

In this chapter, two approaches are used to integrate the designed knowledge graph models
into cognition services in the FACTLOG platform.

6.1 Integration based on OWL models

Echart

OWL models Jena Lib

' ocalhost:8080 5

OWL models Codes based on Jena Visualization based on echart

Figure 29: Workflow for visualizing knowledge graph model

As shown in Figure 29, a React and java project is developed based on Jena Lib in order to
visualize a knowledge graph model which is built for the FACTLOG project. Totally, there
are three steps to realize the visualization:

1. OWL models are developed in Protégé based on the developed ontology.
2. Through the java project we proposed, which details are shown in ANNEX III.
3. The OWL files are shown in the web.

6.2 Integration based on Neo4;
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Figure 30: OWL model transformed into Neo4j
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As shown in Figure 30, ontology models which are developed based on BFO framework is
generated into Neo4j knowledge graph models through turtle. The cypher query language
is used to support reasoning of knowledge graph models.

6.3 Integration based on HTTP API

As shown in Figure 14, we developed a Python application that leverages an OWL ontology
developed based on the BFO framework to instantiate a knowledge graph. An HTTP API is offered
to the external services to enable the training of machine learning models based either on domain
knowledge regarding a specific use case, or regarding specifications for building such a model.
When detailed specifications are provided to build a certain model, a parser is used to interpret how
the features must be built and build them. In all cases, the machine learning model is trained and
persisted into the filesystem, so that it can be later accessed along with metadata of interest. Model
training is performed asynchronously. All information regarding the characteristics of the model, their
instantiation and performance are recorded in the knowledge graph.
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Figure 31. Diagram displaying the components' interaction at the KG-based analytics for process optimization
architecture.
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6.4 Cognition services for FACTLOG Factories

6.4.1 Cognition services based on OWL

6.4.1.1 Anomaly detection for CONT Pilot

Based on ontology for anomaly detection, a knowledge graph model is defined to represent
the rational of anomaly detection for the CONT pilot.

Table 2 — Anomaly detection scenario for CONT pilot

Anomaly
Sensor Possible Required Drift Measure (Fault Possible Causes Possible Service Machine Machine
Data Error additional status) extral (ontology for (Fault) outcomes type

detection data inputs natural data) (Failure)

(Error) (Reference

data)
- Some - The screw height is out of Screw is too Machine has to Implement VW20 Flipping &

impurities limit high stop screwing Screwing

in the
machine

Fault status
Identify the anomaly scenarios for Continental The screw height is out of limit

Fault
Screw is too high

O Error
Some impurities in the machine
Failure
Led by DetectedByFaultStatus Machine has to stop
Service
Implement screwing

fault

ServiceHasFaultStatus faultStatus . . L
Error erviceniastauiistas Machine (machine type: Flipping &
Screwing)
Led by ServiceHasFailure? VW20

F ce Through reasoning, failure can be captured which
ature related to service. Failure can be captured for the

\ N Provide machine.
MachineHasFailure? Machine

Figure 32: Anomaly scenario for CONT pilot

As shown in Figure 32, based on Table 2, an anomaly scenario is defined. The knowledge graph model is built
based on the given data and anomaly ontology. The relationships between failure and two other concepts
including service and machine are not defined in the knowledge graph. Thus, areasoning is executed based on
the developed knowledge graph models in order to capture a machine or service has a failure.

"?.\ Identify the anomaly scenarios for Continental
\ fault

Led_by,
T serviceHasFailure?,

serfice
I Provide
Machine

Figure 33: Knowledge graph models for CONT pilot

As shown in Figure 33, knowledge graph models are defined to define the anomaly scenario.
Through SQWRL rule, a reasoning is implemented:
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FACTLOG_BFO:Flipping_Screwing_machine(?mac) A
FACTLOG_BFO:provide(?mac, ?servi) # FACTLOG_BFO:Implement_screwing(?servi) »
FACTLOG_BFO:ServiceHasFaultStatus(?servi, ?fsta) » FACTLOG_BFO:fault_status(?fsta)
N FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) ~ FACTLOG_BFO:fault(?fau) *
FACTLOG_BFO:ErrorLedByFault(?err, ?fau) A FACTLOG_BFO:error(?err) .
FACTLOG_BFO:FailureLedByError(?imser, ?fal) ~ FACTLOG_BFO:failure(?fail) ->
sqwrl:select(?mac, ?servi, ?fail)

| SQWRL Queries OWL2RL S4 S5 S6

mac senvi
FactLog_BFO:VW20 FactLog_BFO:Implement_screwing_for_continental FactLog_BFO:Machine_has_to_stop
FactLog_BFO:VW20 FactLog_BFO:Implement_screwing_for_continental FactLog_BFO:Machine_has_to_stop
machine service failure

Figure 34: Reasoning result for CONT pilot

Finally, a reasoning result is obtained. From the result, we can understand VW20 machine
has a failure: Machine has to stop.

6.4.1.2 Anomaly detection for BRC Pilot
Based on the ontology for anomaly detection, a knowledge graph model is defined to
represent the rational of anomaly detection for the BRC pilot.

Table 3 — Anomaly detection scenario for BRC pilot

Sensor Data Possible Error | Required Drift Measure | Possible Causes (Fault) Possible outcomes | Service
detection (Error) additional data ( Fault status) (Failure)
inputs extral (ontology
( Reference | for natural
Digital Signals data) data)
Hydraulic Hydraulic system Machine in The time the 1) Hydraulic pump wear Hydraulic Oil Cooling for
Cooler ON going over automatic and cooler is on when 2) Hydraulic valves not temperature will Hydraulic
time temperature if safety circuit OK. | the machine is operating correctly. go outside safe system is
cooler is on for running is varying | 3) Cooler is inefficient. limits and stop running
extended periods outside normal 4) faulty temperature machine
operational detector
parameters so
system is less
efficient
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Sensor data
Identify the anomaly scenarios Hydraulic Cooler ON time
Reference data
Machine in automatic and safety circuit OK.
fault Fault status
The time the cooler is on when the machine
O is running is varying outside normal
operational parameters so system is less
efficient.
Led by DetectedBy Fault
1) Hydraulic pump wear
2) Hydraulic valves not operating correctly

ServiceHasFaultStatus faultStatus 3) Cooler is inefficient
Error 4) Faulty temperature detector
Generate FaultStatus Error
Led by H . . .
- e ydraulic system going over temperature if
ServiceHasFailure ) .
cooler is on for extended periods
F service Sensor Data  [alure ) )
arture Hydraulic Oil temperature will go outside
Reference Data safe limits and stop machine
Service

Through reasoning, failure can be captured which Cooling for Hydraulic system is running

related to service.

Figure 35: Anomaly scenario for BRC pilot

As shown in Figure 35, based on Table 3, an anomaly scenario is defined. The knowledge
graph model is built based on the given data and anomaly ontology. The relationships
between failure and two other concepts including service are not defined in the knowledge
graph. Thus, a reasoning is executed based on the developed knowledge graph models in
order to capture a service has a failure.

DetectedBy

faultStatus

Generate FaultStatus

Sensor Data

Reference Data

Figure 36: Knowledge graph models for BRC pilot

As shown in Figure 36, knowledge graph models are defined to define the anomaly scenario.
Through SQWRL rule, a reasoning is implemented:
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FACTLOG_BFO:fault_status(?fsta) * FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta)
?fau)
?fal)

FACTLOG_BFO:fault(?fau) A FACTLOG_BFO:ErrorLedByFault(?err,
FACTLOG_BFO:error(?err) ~ FACTLOG_BFO:FailureLedByError(?imser,
FACTLOG_BFO:failure(?fail) -> sqwrl:select(?servi, ?fail)

FACTLOG_BFO:Hydraulic_system_cooling_service(?servi) A
FACTLOG_BFO:ServiceHasFaultStatus(?servi, ?fsta) N
FACTLOG_BFO:Hydraulic_Cooler_ON_time(?senData) A
FACTLOG_BFO:Generate_FaultStatus(?senData, ?fsta) h
N
N
N

Finally, a reasoning result is obtained. From the result, we can understand
BRC_Cooling_for_Hydraulic_system_is_running service has a failure:
BRC_Hydraulic_Oil_temperature_will_go_outside_safe_limits_and_stop_machine.

service failure

FactLog_BFOBRG_Gooling_for_Hydraulic_system_is_running
FactLog_BFO:BRC_Cooling_for_Hydraulic_system_is_running
Factlog_BFO:BRC_Cooling_for_Hydraulic_system_is_running

FactLog_BFO:BRG_Hydraulic_Oil_temperature_will_go_outside_safe_limits_and_stop_machine
FaciLog_BFO.BRC_Hydraulic_Oil_temperature_will_go_outside_safe_limits_and_stop_machine
FactLog_BFO:BRC_Hydraulic_Oil_temperature_will_go_outside_safe_limits_and_stop_machine

Figure 37: Reasoning result for BRC pilot

6.4.1.3 Anomaly detection for JEMS pilot
Based on the ontology for anomaly detection, a knowledge graph model is defined to
represent the rationale of anomaly detection for the JEMS pilot?.

Table 4 — Anomaly detection scenario for JEMS pilot

Sensor Data Possible Error | Required Drift Measure (Fault status) | Possible Causes | Possible | Service Machine
detection additional data | extra (ontology for natural | (Fault) outcom
(Error) inputs data) es
(Reference (Failure)
data)

e Ingested clogged pipe Machine in e Ingested material flow | The fault status | The The Waste
material automatic and speed: decreasing | signals  highly | machine | machine to fuel
flow speed safety circuit ingestion speed increased stops provides plant

o Mixing OK. e Mixing power: increasing density/viscosit working the waste
power machine power required to | Yy of the mixture | /must processing.

e Temperature mix the mixture preventing be

e Pressure e Temperature: temperature | normal stopped

e Turbine flow above 160C or 300C in operation .

e Pump speed phases 2 and 3

e Pressure: increased
pressure in phases 2 and 3

e Turbine flow: decreased
turbine flow per minute

e Pump speed: decreased
pump speed when
pumping from B100 to
turbine

As shown in Figure 38, based on Table 4, an anomaly scenario is defined. The knowledge
graph model is built based on the given data and anomaly ontology. The relationships
between failure and two other concepts including service are not defined in the knowledge
graph. Thus, a reasoning is executed based on the developed knowledge graph models in
order to capture a machine has a failure.

2 JEMS pilot did not meet its objectives, especially with regards to the integration of the FACTLOG system to
its plant since there is not yet an operative plant in Slovenia.
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Identify the anomaly scenarios for JEMS * Sensor data (ID)

Ingested material flow speed
« Mixing power
faul t « Temperature

* Pressure
*  Turbine flow
Pump speed
. FauItStatus

Ingested material flow speed: decreasing ingestion speed
Led by DctcctchyFau ltStatus . tI\‘I]l;|n"_lg|){:v;wver increasing machine power required to mix

. gem‘p’e:;ature temperature above 160C or 300C in phases

« Pressure:increased pressurein phases 2 and 3
* Turbine flow: decreased turbine flow per minute

faUltStatus * Pump speed: decreased pump speed when pumping from
B100 to turbine

« Fault

= The fault status signals_highly increased densitylviscosity
of the mixture preventing normal operation (fault).

= Error
+ The fault is led by Error (clogged pipe).
Failure 1ce « Failure

\ | P d + Themachine stops working/ must be stopped.
rovide .
» Service
MachineHasFailure? Machine . i i i

The machine provides the waste processing.

* Machine
+ Waste to fuel plant

Through reasoning, failure can be captured which
related to service. Failure can be captured for the
machine.

Figure 38: Anomaly scenario for JEMS pilot

\‘\\ Identify the anomaly scenarios for JEMS

S fault

A et
Led_by DetectedByFaultStatus

faultStatus

Generate FaultStas 4

Sensor Data

Failure sqrvice

I l vaui:‘
m—
ws swstsee MachineHasFai M:I chine "'-—.‘,7

Figure 39: Knowledge graph models for JEMS pilot

As shown in Figure 39, knowledge graph models are defined to define the anomaly scenario.
Through SQWRL rule, a reasoning is implemented:

FACTLOG_BFO:Waste _to_fuel _plant (?mac) » FACTLOG_BFO:provide(?mac, ’>serV|) .
FACTLOG_BFO:waste processing_service(?servi)
FACTLOG_BFO.SerwceHasFauItStatus(?serw, ?fsta) N FACTLOG_BFO:fault_status(?fsta)
N FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) ~ FACTLOG_BFO:fault(?fau) »
FACTLOG_BFO:ErrorLedByFault(?err, ?fau) A FACTLOG_BFO:error(?err) .
FACTLOG_BFO:FailureLedByError(?imser, ?fal) ~ FACTLOG_BFO:failure(?fail) ->
sqwrl:select(?mac, ?servi, ?fail)

Finally, a reasoning result is obtained. From the result, we can understand the machine
JEMS Waste _to fuel plant provides a service
(JEMS_The_machine_provides_the waste_processing) has a failure:
JEMS_The_ machine_must_be stopped.
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| BT Y TasiE_iv_iuE1_pnan

fusl_plant FadLog_BFO.JEMS_The_ma:

| auuy_un wrima_ iy

=T _uie_masi_iuns sy § ALY S 1 17U U 1V SIS _Ti_y_wut

=
FaclLog_BFO-JEMS_Waste. o_provides_the_waste_processing FadLog_BFO.JEMS_The_machine_mus{_be_stopped
FactlLog_BFO-JEMS_Waste_to_fuel_plant FadtLog_BFO-JEMS_The_machine_provides_the_waste_processing FadLog_BFO-JEMS_The_machine_must_de_stopped
FaciLog_BFO-JEMS_Waste_to_fuel_plant FadLog_BFO-JEMS_The_machine_provides_the_wasle_processing FadLog_BFO-JEMS_The_machine_mus{_be_stopped

machine service failure

Figure 40: Reasoning result for JEMS pilot

6.4.1.4 Anomaly detection for PIA pilot
Based on the ontology for anomaly detection, a knowledge graph model is defined to
represent the rational of anomaly detection for the PIA pilot.

Table 5 — Anomaly detection scenario for PIA pilot

Sensor Data Possible Error | Required additional | Drift Measure ( Fault | Possible Causes (Fault) Possible outcomes (Failure)
detection data inputs | status) extral (ontology
(Error) (Reference data) for natural data)
Mechanical The error is | Failure cause tyoe | The error is detected by | Digital O (stopped) The error is detected by the
lock detected by | the i sinputed | the PLC. Then the yarn PLC. Then the vyarn
the PLC. Then | manually by the | brokerage datais sentto brokerage data is sent to
the yarn | human after the | MES MES
brokerage visual inspection of
data is sent to | the stopepd loom
MES

Identify the anomaly scenarios for PIACENZA

fault » Sensor data
O + Mechanical lock
« Reference data
« Failure cause tyoe the i sinputed

Led b manually by the human after the visual
€d_by DetectedByFaultStatus inspection of the stopepd loom

* FaultStatus
« Digital 0 (stopped )
faultStatus « Fault

Error
* Inadequate loom_ speed (too high), or
Refer Generate FaultStatus quality problem of the yarn lot

* Error
= The error is detected by the PLC. Then
the yarn brokerage data’is sent to MES
* Failure

— o - + When the loom is stopped, a red light
turns on the loom. It means the looni is
topped.

Led by Reference Data

Sensor Data

Failure

Through reasoning, failure can be captured which

related to sensor data

Figure 41: Anomaly scenario for PIA pilot

As shown in Figure 41, based on Table 5, an anomaly scenario is defined. The knowledge graph model is built
based on the given data and anomaly ontology. The relationships between failure and sensor data are not
defined in the knowledge graph. Thus, areasoning is executed based on the developed knowledge graph

models in order to capture a sensor data has a failure.
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i — pore

fault / F—— e i s

O e =
yumnymunmm

faultStatus
eler
ata
N

Generate FaultStatus

G St T g frooene

Figure 42: Knowledge graph models for PIA pilot

As shown in Figure 42, knowledge graph models are defined to define the anomaly scenario.
Through SQWRL rule, a reasoning is implemented:

FACTLOG_BFO:Mechanical_lock (?sendata) » FACTLOG_BFO:Generate FaultStatus
(?sendata, ?fsta) N Reference_data_for_anomaly_analysis (?refedata) 4
FACTLOG_BFO:ReferenceDataRefer (?refedata, ?fsta) A
FACTLOG_BFO:fault_status(?fsta) * FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) "
FACTLOG_BFO:fault(?fau) A FACTLOG_BFO:ErrorLedByFault(?err, ?fau) A
FACTLOG_BFO:error(?err) ~ FACTLOG_BFO:FailureLedByError(?imser, ?fal) 7
FACTLOG_BFO:failure(?fail) -> sqwrl:select(?sendata, ?fail)

SQWRL Queries | OWL2RL S7 S8 |S9

sendata fail
FadiLog_BFO:PIA_Mechanical_lock_sensor_data lautogent. _a_red_light turns_on_the_loom.

Sensor data failure

Figure 43: Reasoning result for PIA pilot

Finally, a reasoning result is obtained. From the result, we can understand the sensor data
(Mechanical_lock) has a failure: “When the loom is stopped, a red light turns on the loom. It
means the loom is topped.”.

v eFACT AT



D3.3 Factory Knowledge for Cognition v1.1

6.4.2 Cognition services based on Knowledge Graph Models in Graphical Database
6.4.2.1 Anomaly detection for CONT Pilot

The screw height is
out of I|m|t
LS

Fault status

The screw height is out
8 Screw is too high of limit
. Fault

Screw is too high
Error

Q - Some impurities in the
machine
Failure
Machine has to stop
e the machine Service
“ Implement screwing
. \Machine (machine type:

» (3 Dala Profiing ) Implement \ Flipping & Screwing)
» [ Common Procedures - Screw|ng \\ VW20

Sample Scripts

» [0 Basic Queries

Figure 44: Reasoning result for CONT pilot

As shown in Figure 44, through the integration of KGM and cognition services, the OWL
model (Section 6.4.1.1) for anomaly detection is used to generate Neo4j knowledge graph
model. Through the reasoning in Neo4j by using cypher, the VW20 machine has fault status
The screw height is out of limit.

6.4.2.2 Sensor values forecasting for JEMS pilot

While the cognitive services exposed for sensor values forecasting work based on induction,
leveraging machine learning models to issue predictions based on patterns learned from
past data, such models are created based on domain knowledge encoded in knowledge
graphs and specific endpoints described and presented in D4.4. In Figure 45 we show a
high-level architecture diagram based on the one introduced in Section 6.3, and relating it
to our knowledge graph and external services consuming it.

We leveraged the owlready?2 library to create an in-memory knowledge graph based on a
custom ontology we developed that represents the relevant entities required to create the
machine learning model (see Figure 46). The ontology had 31 classes, extended from the
BFO upper ontology, and leveraged concepts from four related ontologies: OntoDM, IAO,
DAMON, DMOP. Individuals created in the process were persisted, and could be later
exported in the OWL format when required, and later imported and merged along with the
ontology to the aforementioned Neo4j instance (see Figure 47).
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[ mommm = serwce |
|
| knowLEDGE GRAPH |
| c
|
| g EXTERNAL
| SERVICES
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| ;
| |
L N E
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| g |
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| — :
I L
| DATASET |

Figure 45. Diagram displaying how the KG-based analytics for process optimization service is used by the use
cases we worked for.

Figure 46. Graph visualization of the ontology we created.

wFACT A9



D3.3 Factory Knowledge for Cognition v1.1

Annctation properties Datatypes Individuals = 4 dataminingtask_0Oc9a0be-2dc7-4a76-9306-d218d526b527 — httpyftest.org/onto

Classes Object properties Data properties Annotations  Usage

Individuals: dataminingtask_0c9a69be-3dc7-4a7¢ = & W Usage: dataminingtask_0c9a69be-3dc7-4a76-9306-d2 18d526b527

& X Show: v this v different

# attribute_efob416a-3102-4ea6-a834-4f79e66edac Found 16 uses of dataminingtask_0c9a69be-3dc7-4a76-9306-d218d526b527

& attribute_f201e7a6-d939-4ch0-a29f-06b2edbca6l 3 v 4 dataminingtask_0c9a69be-3dc7-4a76-9306-d218d526b527

& attribute f5e00f44-aed0-4cb8-8cdc-03d6298bfcl 3 i @ dataminingtask_0Oc9a69be-3dc7-4a76-9306-d218d526b527 hasDataset CrudeDistillationUn

dataminingtask 0c9ag9be-3dc7-4a76-9306-d218d526b527
& dataminingtask 0c9a69be-3dc7-4a76-9306-d218d526b527 hasAlgorithm CatBoostRegress
& dataminingtask_0cSa69be-3dc7-4a76-9306-d218d526b527 hasFeatureVector featurevectc
. . @ dataminingtask_0c9a69be-3dc7-4a76-9306-d218d526b527 hasTarget attribute_0Oc9a69be-
: E'”:egfszf::a:!""ﬂ"!:'; & dataminingtask_0c9a69be-3dc7-4a76-9306-d218d526b527 Type DataMiningTask
rudebistifiationtinit- @ dataminingtask_0c9a69be-3dc7-4a76-9306-d218d526b527 produces regressionmodel_0cg

@ CrudebDistillationUnit-3 H dh At amininatael NeOAEORA 2Ar7 A~ 78 0206 A21 8AGIEREDT 11iid "Nr0A&OkA DArT7 A~TE 020
dataminingtask 0c9a69be-3dc7-4a76-9306-d218d524
& dataminingtask 0f8a9362-4369-44d5-8a2f-9fe33433b
& dataminingtask_1c355516-1dc9-4978-9325-b91 3ef71=
& dataminingtask_219be?bc-f992-4583-a334-1be2e37c

& attribute_fodb5342-8e88-4a37-abb6-3%9ebae82bcla
& attribute_ff97b4e5-8b0e-4f78-a2b5-5f395cebb1bo
# catBoostRegressor

Object property assertions

@ dataminingtask_22ba3e0d-c27c-4df3-9b34-ee1714bb mhasDataset CrudeDistillationUnit-2

& dataminingtask_2585e42d-6e0c-49db-b7d6-faagf3ss mmhasAlgorithm CatBoostRegressor

& dataminingtask 2c6ff8b6-02eb-48b7-b97e-f55397230 m hasFeatureVector

# dataminingtask_3c316b4c-1438-4c32-a19c-al6357dd. featurevector_0c9a69be-3dc7-4a76-9306-d218d526b527

& dataminingtask_3cdcl 956-e554-4ed2-8964-568aeda2 mm hasTarget attribute_0c9a69be-3dc7-4a76-9306-d218d526b527

@ dataminingtask_3e77450e-2ca8-46al-88b8-4a86744¢ muproduces regressionmodel_0c9a69be-3dc7-4a76-9306-d218d526b527

# dataminingtask_4a6dbal5-5b06-4565-896f-2bf3c885¢
& dataminingtask_4bb82aaa-0fc8-40ce-9¢21-aBla68dc
# dataminingtask_4cdfba36-ff10-40b2-81f0-209f3bfb4a
& dataminingtask_51542467-634a-47c6-b0b0-52460dbg
& dataminingtask_5c790673-18d9-4f61-a936-287077b9t

Data property assertions
muuid "0c9a69be-3dc7-1a76-9306-d218d526b527"~~xsd: string

& dataminingtask_5dd77fe4-90b3-4ab9-9957-2cc52786! MNegative object property assertions
Figure 47. Individuals created in the ontology-based knowledge base based on data on multiple calls to the
HTTP API.

The service described above enables to use API calls to retrain a model based on particular
data (e.g., new data available) and later deployed to replace the stale ones. The architecture
supporting the deployment of such machine learning models was described in detail in D3.2,
along with the results obtained for the different use cases. Below we reproduce the results
obtained for particular motor power, pressure, and temperature sensors (Figures 48-50).

Figure 48. Motor power sensor
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Figure 49. Pressure sensor

62 horizon: 2 MSE: 54.23164 MAE 2.70202 points in confidence interval: 0.56

Figure 50. Temperature sensor

Ontology-defined ML model and analytical pipeline enables to apply the initial cognitive
services designed in a more generalized approach. While the initial configuration demanded
predefined models and feature vector configurations, the upgraded services with knowledge
graph semantics enable configuration using API abstraction. This key difference enables
the integrator to self-define (automatically configure) the internal analytical data structures,
to match the use case requirements. A step towards generalizable services use.
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7 Conclusion

This report demonstrates basic background of ontology, ontology engineering and
knowledge graph modelling for factory cognition first. Then ontology for the entire FACTLOG
project is introduced including pilot description, optimization, process modelling, etc.
Moreover, knowledge graph models which are developed for each pilot are introduced.
Finally, integration of knowledge graph models and FACTLOG platform is reported including
cognition services based on OWL and Neo4j. In summary, we have three important outputs
from this deliverable:

e Top level ontology, such as BFO and IOF ontology, is used to construct an ontology
framework to support the standardization of our ontology development.

e Five pilots and four technical partners including data analysis, process models,
optimization and anomaly detection are defined based on the developed ontology
framework.

e The developed knowledge graph models are integrated with FACTLOG platform.
Thus, all the FACTLOG components can access the knowledge graph models to
capture related data.

Based on the lessons learned from the FACTLOG project, through the top-level ontology,
the knowledge graph models have a good scalability. All the pilot concepts and domain
concepts of technical partners can be integrated under a unified ontology framework.
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Appendix | — Integrating KGM based on OWL

We have made a project for the visualization for BFO. In this project, two resource classes
(Entity and Line) were constructed for the parse of BFO model. The OWL file was read by
the Jena ontology API. The objects of Entity Class and Line Class stored the topological
relation of BFO model. The open source JavaScript visualization library ECHART was used
for visualization in this project. Due to the large number of properties of BFO, we only show
the properties needed in this particular OWL file in this demo. The details of the project are
shown as follow.

HOW TO RUN THE DEMO IN ECLIPSE
(1) Import project

In Eclipse, select the File -> Import. Then the dialog box is shown as Figure 51. Select the
Existing Maven Project and choose the demo directory and the maven project is import in
the Eclipse. It may take some time to load the libraries.

D s @ % -0 -Q-Q-u-R-FG- &P hr sl a w
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Figure 51: Eclipse project
(2) modify the file path

Modify the OWL file path in line 33 and line 1828 in owlRead.java. Change file path to your
own file path of the OWL file.

~

22 public class owlRead {

23

242 public static ArraylList<line> readLineList() {

25 ArraylList<entity> entityArraylist = new Arraylist<entity>();

26

27 ArrayList<line> lineArraylList = new ArraylList<line>();

28 /] BlEARkEE

29 OntModel ontModel = ModelFactory.createOntologyModel ( OntModelSpec.OWL_MEM, null );
30 try

31 {

32 // ERDCH. MEIRE

33 ontModel.read(new FileInputStr‘eaF("E:\\Factlog_BRC,owl"),"");
34

35 catch(IOException ioe)

36

37 System.err.println(ice.tostring());

38

39

Ac 17 HRRTAE - REMAIFAO T HiFR B ohiAhdar+Drnanar: +ar

Figure 52: Change the path for loading OWL files.

v eFACT 55



D3.3 Factory Knowledge for Cognition v1.1

(3) run the application
Run the springboot project as Java Application, shown as Figure 53.
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Figure 53: Compile the whole project

(4) Result Browser

Open a browser and type in the url localhost:8080. Then the result is shown as follow which
is localhost:8080.

The topology dashboard in OWL

—7
pam’)o;’/_

e

2, 3 3
TOSEadine 1
enso‘ = process2

Censort

Figure 54: Visualize the OWL information
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Appendix Il = Knowledge Graph Modeling tools
1. Protégé

Protégé is supported by a strong community of academic, government, and corporate
users, who use Protégé to build knowledge-based solutions in areas as diverse as
biomedicine, e-commerce, and organizational modeling https://protege.stanford.edu/
In our project, we make use of it to model knowledge graph models using OWL.

Unzip the Protege-5.5.0-win and open Protege.exe. Then start your knowledge graph
modeling journey.

2. Twinkle

Twinkle is a simple GUI interface that wraps the ARQ SPARQL query engine. The tool
should be useful both for people wanting to learn the SPARQL query language, as well
as those doing Semantic Web development htip://www.ldodds.com/projects/twinkle/.
In this project, we make use of it to implement SPARQL query.

Unzip the twinkle-2.0-src and open twinkle.jar. Then start your query journey.

3. Neo4j

Neodj is the only enterprise-strength graph database that combines native graph
storage, advanced security, scalable speed-optimized architecture, and ACID
compliance to ensure predictability and integrity of relationship-based queries. In
FACTLOG, it is used to integrate knowledge graph models with FACTLOG platform
https://neo4j.com/ .

v eFACT 57


https://protege.stanford.edu/
http://jena.hpl.hp.com/ARQ/
http://www.w3.org/TR/rdf-sparql-query/
http://www.ldodds.com/projects/twinkle/
https://neo4j.com/

