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Executive Summary 

This document describes in detail all the requirements for the analytics system to be set-up 
and used in the FACTLOG project. The requirements are collected and presented on a per-
pilot basis, considering the types and volumes of data available for each pilot as well as the 
target problems. Finally, the design specifications for the analytics system are described, 
both from the conceptual and the technical standpoint. 

Each pilot use-case has a set of target problem scenarios they want to address with the 
technology from the FACTLOG platform. This deliverable presents all these scenarios for 
each pilot and identifies the role of analytics in them. Once each scenario is formulated as 
an analytics problem the methodology for addressing it is identified. The data sources and 
types are also inspected, and it is assessed if they are appropriate for the planned approach. 
An aggregated overview of the requirements is given for clarity. 

Based on the requirements a design specification for the analytics system is drafted. First 
the analytics system is placed in relation to other components. It’s role as a building block 
of the cognitive factory framework is explained as well as the interactions it has with the 
optimisation system and the knowledge graph and process models. Then, a set of tools (i.e. 
analytics libraries and platforms) is identified along with the methods and approaches that 
address the requirements collected in the preceding sections of the document.  

The deliverable is a comprehensive collection of requirements for the analytics system and 
the specification of its conceptual and technical design. It is built on the information and 
insights collected regarding the pilots and the project challenges up to the time of its 
preparation. The requirements and specifications may evolve as the project progresses and 
any adaptations will be reported in future deliverables. 
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1 Introduction 

1.1 Purpose and Scope 

This document collects the requirements for the analytics system from the pilot cases and 
aggregates them into a comprehensive list that will guide the development from both the 
methodological and technical perspective. Requirements collection took into account both 
the operational needs of the pilots as well as the data availability. The operational needs 
determine what kind of results are required by each pilot to improve their production flow. 
This dictates the capabilities the analytics services need to offer. The data further informs 
the technical aspects of the services: what type and format of data they need to be able to 
consume; what volume of data they need to be able to process; and if there are any pre-
processing steps needed before inputting the data into the analytics algorithms. 

The analytics services are typically the first step in the data processing path. They clean the 
data and distil higher-level signals from it. For example, the analytics system may detect an 
upcoming machine malfunction in a predictive maintenance scenario. This prediction is a 
signal that is used, along with any relevant context data, to activate other systems such as 
optimisation. These subsequent systems then take in the outputs of analytics as inputs to 
perform their functions – e.g. in this case schedule maintenance as soon as possible in such 
a way as to minimally disrupt the production process and the delivery deadlines. 

After the requirements are collected and aggregated, an overview of methods and tools that 
address the requirements is given. The overview presents a selection of approaches that 
can satisfy the pilots’ needs as they are understood at the time of preparation of this 
document. The best options will be selected, and other methods may be added as the 
project progresses and more insights are gained into the pilots and their data. 

It is important to note, that at the time of preparation of this deliverable, not all the datasets 
were available to the technical partners for detailed study. The legal details of sharing the 
data among the partners (including preparation and signature of the non-disclosure 
agreements) had to be resolved first. The technical aspects of sharing the datasets in an 
efficient manner also took time. These processes were foreseen, but their duration was 
significantly prolonged by the COVID-19 outbreak. These processes involved a lot of people 
from different departments (i.e. legal, management, archive…) and were significantly 
impacted by closures. Specifically, Piacenza and Continental factories closed a month and 
a half and many employees, including those directly involved in the FACTLOG processes, 
were put in layoffs in order to recover some costs. Consequently, this deliverable has been 
delayed and its contents are partially based on data specifications and samples, rather than 
full datasets. 

Despite the drawbacks listed in the previous paragraph, the technical partners in charge of 
analytics are confident the requirements of the pilots had been addressed well. The 
consortium has a wealth of previous experience to lean on and is able to anticipate the 
specifics of individual cases. Furthermore, part of the work plan of some pilots (such as 
Piacenza and BRC) was the construction and expansion of their data infrastructure, so the 
project was prepared for adaptation to developing data needs from the start of the project. 
Any and all changes or deviations from the designs in this document will be reported in 
following deliverables. 
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1.2 Relation with other Deliverables 

This deliverable builds on top of the descriptions of the pilot use-cases in D1.1 Reference 
Scenarios, KPIs and Datasets. Though short summaries of the pilots are given in sections 
2.1 to 2.5, a reader should consult D1.1 for their full descriptions. 

This document serves as a base for a lot of the future work in the project. It contains the 
requirements specification for all the next steps within WP2 and is as such the base for all 
its future deliverables: D2.2 Analytical Platform for Process Industry, D2.3 Holistic Model of 
Uncertainty and Causal Relations, D2.4 Anomaly Detection System, D2.5 Manufacturing 
Chain Recommender System. 

The analytics system, the requirements of which are detailed in this document, is a building 
block of the cognitive factory framework together with other components. An overview of 
that role is explained in section 3.1.1 – the framework will be described in detail in deliverable 
D1.2 Cognitive Factory Framework. The technical specifications listed in the section 3.2 are 
going to be integrated into the specifications for the entire Factlog system in deliverable D1.3 
System Architecture and Technical Specifications. 

The services and tools built based on the requirements and specifications in this document 
will be described in deliverable D3.2 Data Analytics as a Cognitive Service. Those services 
and tools that focus on methods that make use of the structured knowledge in knowledge 
graphs prepared in WP4 will be described in D4.4 KG-based Analytics for Process 
Optimization. 

Finally, since analytics are one of the main consumers of data in the Factlog system, their 
requirements and specifications are an important input for the design of the data acquisition 
and transfer systems detailed in D6.1 and D6.2 Data Collection Framework. 

1.3 Structure of the Document 

The introduction first outlines what is the purpose of this document and the areas if covers 
in section 1.1 and then lists all the deliverables related to this document, serving either as 
its input or representing future work based upon its content, in section 1.2. 

The requirements section follows with individual pilots’ requirements as well as their data 
types and sources explained in subsections – namely JEMS in 2.1, Tupras in 2.2, Piacenza 
in 2.3, Continental in 2.4 and BRC in 2.5. An aggregation of the requirements over all pilots 
is then given in section 2.6. 

The next major section describes the design of the analytics system. First, the conceptual 
design is presented in 3.1 which also places the analytics system in the relation with the 
other components and work packages in 3.1.1. The technical design of the analytics system 
follows in section 3.2, with the list of tools planned for use in section 3.2.1 and the list of 
methods that address the pilots’ requirements in section 3.2.2. 

Finally, the appendices hold the detailed tables of meta-information about the datasets. 
There is one appendix per pilot, namely: Appendix I – JEMS Data, Appendix II – Tupras 
Data, Appendix III – Piacenza Data, Appendix IV – Continental Data and Appendix V – BRC 
Data. 
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2 Analytics requirements 

This section presents the analytics requirements of all the FACTLOG pilots. The detailed 
descriptions of the pilots can be found in deliverable D1.1, here the focus is on identifying 
the roles of analytics in the pilot scenarios and formulating the methodology and the 
technology needed to fulfil those roles. 

2.1 Waste to Fuel Transformer Plants: Pilot Case by JEMS 

JEMS is developing waste-to-fuel transformer plants. The plants transform hydrocarbon-
based waste into synthetic diesel fuel through a chemical de-polymerization process. An 
overview of the process flow is shown in Figure 1. The plants are designed for continuous 
operation and run the process in a multi-stage pipeline from input to output. The challenge 
in the JEMS FACTLOG pilot is to use cognitive digital twin technology to ensure the optimal 
operation of the plant and to avoid malfunctions. The plant is equipped with a large number 
of sensors monitoring its operation in real time and provide the data to facilitate the cognitive 
twin. 

 

Figure 1: The JEMS plant operating process flow 

2.1.1 Problem Scenarios and Requirements 
There are two scenarios in the JEMS pilot. 

Scenario #1: Clogging of pipes 

Description: The material being processed in the plant passes through the plant pipes from 
the feeding stage at the start all the way to the output after the final distillation (the central 
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boxes in the diagram in Figure 1 with arrows from Feeding to Storing). At input the waste is 
ground down into small pieces and mixed with processing oil so it can pass through the 
pipes. Since the material is still quite dense and non-homogeneous, the pipes can get 
clogged. Cleaning the pipes can stop production for up to a day and is therefore costly. If 
clogging is detected beforehand, there are several actions available to prevent it (e.g. 
filtering or adding more oil) depending on the cause of the clogging.  

Analytics approach: This scenario represents an anomaly detection problem. When a pipe 
is getting clogged the values reported by the plant sensors deviate from those recorded 
during normal operation. This can be detected by observing discrepancies between the 
sensor values and those generated by the simulation based on historic values. The root 
cause of the anomaly, which in this case means which pipe exactly is getting clogged and 
why, can be identified either by using process models built by experts or by using a 
classification model which finds malfunctions of the same type in historic data. 

This is a general anomaly detection approach that can detect any kind of anomaly, not just 
clogging of the pipes. If its performance would prove to not be satisfactory, a targeted 
classification model could be built using stream learning methodology by labelling the target 
clogging situations in the data. The general and targeted approach can run side by side with 
the targeted model catching the known critical failures, while the general detector covers 
any other problems. 

Scenario #2: New input materials 

Description: The plant can process any type of hydrocarbon-based waste, which includes 
for example old wood, garden trimmings or even plastic garbage. These types of waste differ 
significantly in their properties such as calorific value, water content, chunk size etc. The 
plant operating parameters need to be set appropriately to ensure optimal processing of the 
input materials and determining the best parameter set can be a slow process that takes 
days. Since the plant is designed for continuous operation, it would ideally be able to 
automatically adapt to the new material or even variations in the same input material batch. 

Analytics approach: To explore the space of possible parameters without actually running 
the plant we need to be able to simulate the plant operation. We can achieve this by 
modelling the plant stages taking the parameters and sensor values on the inbound pipes 
as input data and predicting the sensor values on the outbound pipes. A streaming 
regression model or an artificial neural network are models that can achieve this purpose. 
The exploration of the parameter space can be formulated as an optimisation problem for 
the optimisation component of the FACTLOG platform, however a reinforcement learning 
approach is also applicable as a solution from the field of machine learning. 

2.1.2 Data Types and Sources 
The chief source of data in the JEMS case are the sensors from the waste processing plant. 
The entire process is monitored from input to output and the data includes machine state 
values such as motor speeds or valve open/closed status as well as operations 
measurements such as temperature or pressure. Besides being used for monitoring the 
values are also stored in a historian database. The list of values along with their properties 
is given in Table 2 included in Appendix I – JEMS Data. 
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Note that the table contains more than 170 values, which is the number of sensors reported 
in deliverable D1.1. JEMS is actively working on extending the sensor array and the table 
contains some sensors which are new and whose values are not present in the current data 
samples. As the analytics will eventually need to handle the full set and the new sensors are 
similar in type than the old ones, we report the full current set in Appendix I – JEMS Data. 

Roughly two years’ worth of historical data is available from 22.6.2015 to 21.1.2017 
amounting to about 10 Gb of data. All the values are either real-valued numbers or Boolean 
values (true/false). Both the data volume and the data types are well suited for the analytics 
algorithms and models referenced in section 2.1.1. 

2.2 Oil Refineries: Pilot Case by TUPRAS 

The Tupras oil refinery processes raw oil into several petroleum products such as Liquified 
Petroleum Gas (LPG), naphtha, gasoline, diesel and fuel oil. Within FACTLOG the focus is 
on LPG, which is formed as a result of distillation processes. An overview of the processes 
is shown in Figure 2. During these processes, some impurities (mainly pentane and sulphur 
in the form of hydrogen sulphur and mercaptan) that need to be removed using a complex 
set of interconnected processes. FACTLOG focuses on the route from LPG raw streams 
towards LPG refined streams. The main problem is how to achieve the proper quality of the 
final LPG streams, making sure the impurities are within legally set limits (chief among them 
being the sulphur content). The core idea is to detect possible trends and anomalies of the 
ingredient constitution in the early phases to minimise the impact in the final output tank. 
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Figure 2: The Tupras LPG production process and the quality observation loop 

2.2.1 Problem Scenarios and Requirements 
There are three scenarios in the Tupras pilot. 

Scenario #1: New Data Streams Monitoring and Storing 

Description: LPG is the output of several different subsystems in the oil refinery, which 
means the system needs to collect, store and process a wide variety of data. While this is 
primarily a knowledge management problem where data needs to be transformed into a 
common format and validated, analytics can have a role in the cleaning and pre-processing. 

Analytics approach: This scenario covers the very initial stages of analytics work, including 
data cleaning and preparation. The key requirement is to provide quality input for later 
processing. This includes data resampling and interpolation when sensors fail to report 
readings with reliable frequency. Some feature selection could also be performed at this 
point, using standard machine learning feature evaluation metrics to determine which data 
streams to focus on. 
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Scenario #2: Anomaly detection 

Description: As the LPG production process is running, LPG is produced in several different 
sub-processes in subsystems of the refinery and is then collected into a common output 
pool (tank). LPG quality is tested on samples from this final pool. Since this is a laboratory 
test which takes time it would be highly beneficial if bad trends and anomalies would be 
detected earlier in the pipeline (and in time).  

Analytics approach: This is an anomaly detection problem which can be tackled with a 
general approach of building a generative model of the process from historic data and then 
comparing the sensor readings to the model predicted values. When significant 
discrepancies are detected, an alert is raised. The generative model can either be based on 
typical value distributions of the sensor values; a set of regression models for individual 
stages of the pipeline (e.g. neural networks); process models built by experts or a 
combination of all three. Since the allowed limit values are known for all the impurities, a 
classification model could be built for each, predicting for some time horizon ahead that the 
limit value is going to be exceeded. 

Scenario #3: Impact assessment and optimized intervention (LPG quality) 

Description: As already described above in the description of scenario #2, the final LPG 
product is a mix of several different subsystem outputs. Once an anomaly is detected or off-
specs product is predicted, the best way of remedying the problem needs to be determined. 
This includes identifying the relevant parts of the process/refinery and estimating the impact 
of these parts. The optimal intervention can then be found and performed. 

Analytics approach: This is a root-cause identification and an optimisation problem solved 
by combining different components of the cognitive factory framework. The generative 
model of the pipeline, introduced in the approach to scenario #2, can be used to explore the 
impact of interaction with different parts of the pipelines. By exploring the space of possible 
interactions, the most impactful and effective interactions can be identified. The strategy of 
exploration is in the domain of the optimisation component. 

2.2.2 Data Types and Sources 
The Tupras data comes from their oil refinery in Izmit, Turkey. The refinery is equipped with 
a wide array of sensors with different properties. Here we provide an overview over the main 
parts of the pipeline and the different types of sensors. 

There are ten LPG raw streams. The origin of these streams stems from 6 different units 
that are labeled as: Crude Distillation Unit (CDU), Platformer, Maximum Quality Diesel 
(MQD), Hydrocracker (HYC), Fluid Catalytic Cracking (FCC), Delayed Coker Unit (DCU). 
The crude oil is fed into crude distillation units (CDUs), which have the following main 
elements (described in detail in D1.1): 

• Debutanizer column: removes the heaviest components (C5 and above) 

• Deethanizer column: removes the lighter components (C1 and C2) 

• DEA/merox column: removes sulphur (hydrogen sulphur and mercaptans) 

• LPG recovery: recovers leftover LPG from by-products 

The main types of sensors/values for these elements are: 
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• Temperature 
o Description (nature of data): temperature of the related stream 
o Measurement device: Temperature Transmitter / Thermocouple 
o Frequency: 1 data point / sec 
o Unit: °C 
o Range: 20 - 200 °C 

• Flow 
o Description (nature of data): flow of the related stream 
o Measurement device: Flowmeter 
o Frequency: 1 data point / sec 
o Unit: m3/h 
o Range: 0 - 3000 m3/h 

• Pressure 
o Description (nature of data): pressure of the related stream/ specific location 

of the column 
o Measurement device: Pressure Transmitter 
o Frequency: 1 data point / sec 
o Unit: kg/cm2 
o Range: 0 - 20 kg/cm2 

• Level 
o Description (nature of data): level of capacity reached 
o Measurement device: Level sensor 
o Frequency: 1 data point / sec 
o Unit: % 
o Range: 0 - 100% 

The purified LPG is then collected in the collection tanks which are equipped with the same 
sensors but the typical values have different ranges: 

• Temperature: 0 - 40 °C 

• Flow: -500 - +500 m3/h 

• Pressure: 0 - 8.5 kg/cm2 

• Level: 0 - 20 m 

The chemical composition of the LPG and the levels of various impurities are measured by 
online analysers at different points in the process and in a laboratory using a gas 
chromatograph at the collection tank. The ranges of these readings differ depending on what 
impurity they are testing for: 

• Sulphur: 0 - 250 mg/kg 

• Butane: 0 - 200 %(mol/mol) 

• Ethane: 0 - 300 %(mol/mol) 

• Diene: 0 - 6 %(mol/mol) 

The frequency of lab tests differs between the units from weekly tests in the final tank to 
daily in sulphur related units but are typically not performed more than once per day at best. 

At least two years of historic data is available at the frequency of 1 data point/sec (for non-
laboratory values). All values are real-valued numbers which are well suited for machine 
learning algorithms. The volume of data is very large and should be sufficient for analyses. 
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In case the data volume proves to be so bit that it is hard to process, down-sampling can be 
performed to produce a smaller dataset which is still representative. 

2.3 Textile Industry: Pilot Case by PIACENZA 

Piacenza manufactures woollen fabrics and is the leader in their market segment. Their 
plant receives the wool already cleaned and spun into yarns from a supplier and they 
perform the weaving into fabric on their machine looms. The looms are massive machines 
which must be set up with appropriately warping the yarns – a process that can take 
considerable time. The looms then run the weaving process during which a yarn may break. 
In case of such breakage, the process must be stopped and the yarn mended, slowing down 
production. 

As a supplier to a very dynamic and demanding market, Piacenza continuously struggles 
with meeting the demand for their products. Optimally planning the production orders to 
minimise delays due to loom setup and adapting the plans to incoming high-priority orders 
is key to their business. Besides that, due to the demand there is a constant push to set the 
weaving process on the looms to go as fast as possible, but that increases the likelihood of 
yarn breakages. Predicting a yarn is likely to break during operation so that it may be avoided 
would help the process. 

2.3.1 Problem Scenarios and Requirements 
There are two scenarios in the Piacenza pilot. 

Scenario #1: New data streams and storing 

Description: The Piacenza plant already has a data management and collection system that 
stores the data from the existing sensors, the Manufacturing Execution System (MES) data, 
the Enterprise Resource Planning (ERP) data and the production schedule. In order to 
support the improvements aimed for in the project, the collected data needs to be extended 
with new data sources, in particular with regards to the quality of input materials (e.g., yarn 
for weaving) and from inside sources, including incremental output (e.g., fabric quality) and 
performance data (e.g., machine speed). At the time of writing this document the Piacenza 
team is working actively to extend the suite of machine sensors, but their utility and 
relevance must be evaluated. 

Analytics approach: Analytics can help evaluate and identify relevant data streams among 
the new ones. By using methodology for feature selection, the predictive and explanatory 
value of individual data streams for the target events can be estimated and those that prove 
to not be useful in the pilot, can be dropped for the full deployment. 

Scenario #2: Anomaly detection and new production plan formulation 

Description: The plant constantly needs to plan how to process the work orders to meet the 
demand. Since the loom setup can take a long time, this is a crucial factor for planning. 
Some loom settings are more similar among each other than others any it may be beneficial 
to plan them one after the other on the same machine. The two main challenges to plan 
effectively are newly incoming orders of high-priority and the breakages on the looms. Both 
disrupt the regular operation and require the plant to modify the plans on-the-fly.  
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Analytics approach: The key contribution of analytics is to provide a prediction for when a 
yarn is likely to break. This is an anomaly detection problem, which can again be solved with 
a general anomaly detection methodology or using a targeted stream classification model if 
there is labelled data available. Since in the Piacenza case, the target anomaly is known in 
advance (breaking of the yarn), a targeted classification seems a more likely approach. An 
additional challenge is identifying the root cause, so that the loom operating parameters can 
be modified appropriately. This is a cognitive task as it combines several components. The 
predictions may be probabilistic but should be reliable enough so that when they are fed to 
the optimisation component as input, good plans can be produced. 

2.3.2 Data Types and Sources 
As mentioned above, Piacenza already collects some operational data in their plant, but 
plans to expand the set with new sensors. The existing and planned features along with 
their meta-information are listed in Table 8 in Appendix III – Piacenza Data. 

The historic data contains the past orders and related planning from MES and ERP for looms 
and some sensor readings for energy consumption and water. Energy consumption is an 
important feature. In weaving, for example, given that all other parameters are constant, an 
increase in energy use reveals a wearing of components which can lead to an expected 
stop of production. Currently the past energy consumption is available at aggregated level 
for the whole weaving department and there are ongoing efforts to obtain this data at the 
machine level by installing further sensors. All the data relevant for the anomaly detection 
problem is numeric and well-suited for processing with machine learning algorithms. 

At current stage of the project (September 2020) all the above-mentioned data are collected 
except the ones related with machinery consumption: they are still to be selected. This delay 
is related with the closure of the company due to the COVID emergency and to the period 
of mandatory holidays and layoff of the employees caused by the lack of orders. These 
provisions involved all the division of the company to grant equal economic treatment. It is 
expected to be able to run the selection and installation of the sensors by the end of 2020. 
In order to avoid any slowdown in FACTLOG activities a contingency plan has been formed: 
the involved partners have agreed to define the format of the expected data related with 
energy in advance and, eventually, to work on estimated dummy data until the real ones will 
be available. The details will be described in the deliverables on the data collection 
framework (D6.1 and D6.2). 

2.4 Automotive Manufacturing: Pilot Case by CONTINENTAL 

Continental is among the top worldwide electronics manufacturers. Its products are 
manufactured in electronics plants such as the plant in Timisoara where the pilot line is 
located. This plant produces high electronic products designed by different Continental 
developers worldwide. The products are customized for the final customer (i.e. automotive 
original equipment manufacturers) from the design phase onwards. Although these products 
(e.g. airbag control units, chaises controllers, hand brake controllers etc.) have a high 
complexity degree, their manufacturing process can be described (in brief) as follows:   

• SMT (Surface Mount Technology) lines: High automated lines where electronic 
components are placed on the PCB boards.  

• PCBA (Printed Circuit Board Area): PCB area, where the electronics built in SMT 
will be separated into smaller parts (PCB’s) and tested electrically (In Circuit Test). 



D2.1 Analytics System Requirements and Design Specification V1.1 

 

 

19 

Additional processes can also take place in this area like Press Fit, Handling, 
Flashing of Microcontrollers and Temperature functional tests.   

• FA (Final Assembly) and Test Area: This is the step of production where the 
electronics are connected to the mechanical part and finally tested and labelled. The 
processes in this area connect the mechanical parts: Screwing, Press Fit, Gluing, 
Riveting, Snap In. The testing area consists of tests line Functional test of the product, 
Automatic Optical Inspection, Force monitoring for the snap in, air leakage test.   

• Packaging and delivery operation: In this step of manufacturing, the products are 
packed in customer specific boxes and all the information needed by customer is 
linked to the unique number of each box. 

2.4.1 Problem Scenarios and Requirements 
There are three scenarios in the Continental pilot. 

Scenario #1: Machine downtime caused by breakdown 

Description: In the Timisoara Continental plant all production lines run non-stop 24/7. Every 
unplanned downtime affects the plant because it could cause the situation of not delivering 
the needed quantity in time to the customers. Foreseeing malfunctions in advance would 
greatly alleviate this problem and improve the Overall Equipment Efficiency (OEE) by 
increasing the availability and increased quality of the Final Assembly Line. An example of 
a process where such monitoring is needed is the screwing process: 

- The process is implemented with state-of-the-art technology components (e.g. 
screwdriver, screwdriver controller, axes systems for positioning, PLC for controlling 
the station).  

- HMI interface with operator (permits the operator to know the status of the machine 
and the step sequence of the process). 

- Specific communication with MES system for traceability and monitor performance of 
the line and specific process parameters.  

- Issue handling process is manual: the operator sees an issue in HMI, tries to correct 
it by interaction with the machine. And in case of no solution the machine is set in 
breakdown. 

Analytics approach: This is again a predictive maintenance problem solvable through either 
general anomaly detection or targeted (stream) classification models. By modelling the 
mechanical assembly area of the Final Assembly Line from the sensor readings we predict 
the machine malfunctions and improve (OEE). Our expectation is the reduction of down time 
caused by breakdown due to the possibility to forecast issues and plan them in preventive 
maintenance. 

Scenario #2: Machine maintenance cost in % of total operational cost 

Description: There are two different types of maintenance done in the plant: Preventive and 
Corrective/Reactive. By doing this, we can have two types of costs correlated with the 
number of failures. In case of preventive maintenance, we can have high costs with a low 
number of failures, while on the other hand, if we do not make preventive maintenance and 
wait until we have a big number of failures, we will, definitely, have high costs too and also 
unplanned downtime, which also produces a lot of costs. Finding a balance between the two 
is crucial. 
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Analytics approach: The challenge is finding the right balance in terms of cost of preventing 
malfunction vs number of failures in the Final Assembly Line which is an optimisation 
problem (illustrated by the graph in Figure 3). Another possible optimisation parameter is 
the reduction of maintenance cost in terms of head count time used for Predictive, 
Preventive and Corrective maintenance in the Final Assembly Line. Analytics support this 
optimisation problem by providing a reliable estimate of the likelihood of malfunction from 
the models from scenario #1. 

 

Figure 3: The optimisation of predictive vs. corrective maintenance cost 

Scenario 3: Energy consumption of machines 

Description: There is currently no correlation between the line ON/OFF state and the 
production scheduling at the plant. This way a lot of energy is consumed while the line is not 
running and the equipment is not operational/running/producing. By taking this into account 
at the schedule planning stage a significant amount of energy could be saved. 

Analytics approach: This is an optimisation problem focused on the reduction of energy 
consumption/equipment by interacting with the planning in the production and also on a 
different implementation in the equipment used in production in terms of energy 
consumption control and monitoring.  This includes: 

- automatic setup of the Final Assembly Line status (plan / no plan) and Final Assembly 
Line energy consumption.  

- automatic safe mode “shut down” and “wake up” based on production scheduling. 

Analytics support this by modelling the energy consumption of machines using regressive 
machine learning models where this is not possible to estimate otherwise. 

2.4.2 Data Types and Sources 
The data in the Continental pilot is coming from the sensors in the production equipment. A 
Manufacturing Execution System (MES) which collects data from the machines is already 
in place. Each piece of equipment is connected to a MES client and they exchange data 
which is then stored in the MES database as illustrated in Figure 4. 
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Figure 4: The data collection process from the machines through MES clients 

The format of the data and its other meta-information is presented in Table 9 located in 
Appendix IV – Continental Data. The sensors return binary or real-valued reading well suited 
for the kind of predictive and regression models needed by the pilot. Continental stores over 
ten years of historic data with a high resolution, so data volume may be a challenge. Feature 
selection and sub-sampling techniques will be used if necessary. 

2.5 Steel Manufacturing: Pilot Case by BRC 

BRC is the largest supplier of steel reinforcement in the UK, producing bespoke products 
for the construction industry. They use two types of raw materials, bars and coils of different 
diameters, in order to produce batches of final products made to customer specification. 
Each job requires a batch of steel to be produced in a certain shape – everything from simple 
straight bar to complex 3D shapes. The process involves cutting and shaping various 
diameters of steel reinforcing bar using various manual or automatic operations. The 
bending machines work with great forces and under great stress and do break down. Having 
a system that would supervise its operation and detect upcoming potential malfunctions 
would help avoid unnecessary down-time. Besides that, there is a need to improve 
management of the batches of steel in the production floor. An overview of the BRC 
production process is shown in Figure 5. 

 

Figure 5: The BRC production process 
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2.5.1 Problem Scenarios and Requirements 
There are two scenarios in the BRC pilot. 

Scenario #1: Machine monitoring 

Description: The hydraulic bending machine is one of the key pieces of manufacturing 
equipment at BRC. It works with immense pressure and is prone to breakage. The problem 
is, there is no way of foreseeing the upcoming mechanical failure until it occurs as the 
machine offers little insight into its operational status. The plan to overcome this is to install 
a sensory layer between the machine control panel and the machine itself to be able to 
capture the signals going to and from the machine. A system is needed that will predict the 
likelihood of breakage from the dynamics of these values. 

Analytics approach: Similar as in the other cases this is an anomaly detection problem. 
Normal operational values need to be identified for different machine jobs and settings so 
that alerts may be raised when machine status deviates significantly. The challenge in this 
pilot lies in the fact that the machine sensor array is still being assembled and there is no 
existing data to learn from (an overview of the data, including the planned outputs of the 
new sensors, is presented in Appendix V – BRC Data). Therefore, more attention will need 
to be given whether to proceed with the more general approach of modelling the machine 
state with a generative model or perhaps to use more targeted stream classification models 
by incorporating more expert knowledge into the models. Nevertheless, this does not 
change the technical requirements of the pilot. 

Scenario #2: Production scheduling and crane operation 

Description: The steel rebar is processed in the BRC factory floor in batches. The batches 
are moved around using cranes when loading/unloading the materials to/from the machines. 
To achieve optimal plant operation, the jobs on the machines have to be planned together 
with the crane movements. This way, there is minimal waiting and new materials are 
provided to the machines when they finish previous jobs and the crane is available to move 
the processed batches away from the machines for storage or shipment.  

Analytics approach: This is an optimisation problem where the space of possible plans 
needs to be searched to find the optimal one. The optimization component for the BRC case, 
depends upon parameters that are input data to be derived from analytics. As discussed in 
D1.1, the role of optimization in this pilot case is to provide solutions for BRC’s complex 
multistage flowshop problem. In order for optimization to be able to derive to an optimal 
production schedule that takes under consideration raw materials, crane movement and 
machine maintenance, the analytics should provide indications with respect to, productions 
times, anomalies detection relevant to the machines’ availability and schedules of 
maintenance. More precisely, the analytics should provide inputs with respect to operation 
and set up times for each product type in every production step. Such estimations could be 
easily derived for some products (for instance products with shape code C1-98) but much 
trickier for others (for instance products with shape code C99). Regression models 
predicting the operation times based on the machine state and product specifications 
(materials, shape…) can be used. 

Additionally, when operating, different detected anomalies in the involved machines will 
have to be able to inform the optimization module for a potential problem (e.g. 
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underperformance based on currently produced batch). Lastly and in relation to the cranes 
detected anomalies in operation (e.g. availability, movement based on production schedule 
etc.) will also have to be identified in order to also inform the optimizer. These anomalies 
are outputs of the anomaly detection system described in scenario #1. 

2.5.2 Data Types and Sources 
Currently, the BRC production floor is not fully equipped for the application of digital twin 
technology for the scenarios described above. The process still needs to be equipped with 
sensors and some of it needs to be digitalised. These adaptations are being performed now 
in the scope of the project, including installing a sensory layer into the machine control 
board.  

There are several different data sources in the BRC pilot: 

• Production data: Production data that is stored is stored and utilised in the MES 
system however reports can be derived in excel 

• Planning data: Planning data from the MES system using its existing optimisation 
based on machine providers production estimates and rules of optimisation we set. 
It is exported then to excel 

• Barmark data: Data generated once entered from customer schedules into MES and 
exported by search query into excel 

• Transport data: Mostly generated from the planning sheet however is then moved 
into a separate excel and the data is then moved in excel to generate loads 

• Machine capability: Produced from experience and machine handbooks 

• Stock data: Currently done by stock processor who records in excel 

• Machine sensor system: Produced form new monitoring systems on the machine 
and data fed into a PLC then database 

• Crane sensor system: Newly fitted system to measure distance of long travel and 
cross travel that’s fed into a database 

• Scan data: Dependant on existing MES System doing extra scanning and 
timestamping or if new app system for scanners needs to be created to work 
alongside 

• Machine PPM schedule: Currently done manually and in existing Microsoft 
applications new system needs creating to work with FACTLOG system 

The data parameters with their meta-information, including data types, data availability and 
data sources, are listed in Table 10 located in Appendix V – BRC Data. Note that though 
the majority of the values are numeric or binary, some of the parameters are less structured. 
A representative example of these is the parameter “Instructions for transport”, collected 
from the planning sheet. Such values will need to be manually inspected by a data science 
expert to extract features appropriate for processing in machine learning algorithms. Most 
likely, manual transformations will be sufficient as there are only a few such values. 
Automatic feature generation approaches will be used if they prove necessary. For example, 
term frequency measures such as TF-IDF can be used to identify important phrases in the 
instruction texts and indicator features can be generated for those. 

2.6 Overview 

This section summarizes the preceding pilot-specific sections (sections 2.1 to 2.5) and gives 
an overview of the requirements for the analytics system – presented in Table 1. All the 
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pilots are, in one way or another, focused on detecting and preventing negative events in 
their production process. Since each such negative event is an anomaly with respect to 
“normal” production, this can always be framed as an anomaly detection problem. There is 
a distinction if a general anomaly detection approach is needed or a targeted approach can 
be used. The latter can be less resource consuming and might be more reliable but requires 
more specific learning data. The pilot-specific descriptions above point out where either of 
the approaches might be applicable. In Table 1 we point out the approaches which appear 
best at the moment of writing this document. Once we obtain more data from the pilots and 
gain more insights, some of the choices for optimal approach may change. Any changes in 
methodology will be reported in subsequent deliverables. 

Table 1: Summary of analytics requirements 

Pilot Anomaly 
detection 

Generative models / 
simulation 

Stream classification / 
regression 

Feature 
selection 

JEMS x x x   

TUPRAS x x   x 

PIAC x   x x 

CONT x   x   

BRC x   x   

The outputs of the analytics system are the inputs for the subsequent components which 
are triggered by the result of analytics or work on them. The optimisation services are a 
dependent component. Where the analytics have the job of detecting the problem, the job 
of optimisation is to find the actions that will rectify the situation in the best way. The relations 
between analytics and optimisation are already mentioned in specific pilots, here we 
summarise the main requirements from the optimisation perspective: 

• Indications with respect to anomaly detection for the different units involved in 
the production, as a whole and per unit involved. The latter must examine and should 
have as a basic goal the identification/prediction/estimation of abnormalities in 
production. The sooner such a situation is identified, the sooner Optimization will be 
utilized to resolve the situation, hence the less energy (or, similarly, cost) will be 
required to recover to normal production. 

• Modelling through analytics and Machine Learning (ML) of the transformation 
process of process units that participates within production process. Each 
process unit transforms input into output. For example, in the Tupras case a 
debutanizer receives a specific feed and applies temperature at the top and at the 
bottom as well as pressure in order to remove impurities, i.e., C1 and C2 from the 
top and C5, C6 etc. from the bottom. The different settings that may be applied (e.g., 
higher/lower temperature at the top/bottom with different levels of pressure applied) 
result in different outcomes with respect to the amount/percentage of impurities 
removed but they also correspond to different energy consumption/cost levels. 
Optimization requires incorporating all possible sets of settings for all related process 
units so as to select the ones for each process unit that collectively offer the best 
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trade-off for on-specs recovery between energy consumption/costs and 
improvement with respect to impurities. Modelling process transformation may be 
implemented through specific physical/chemical laws or it may be data-driven; i.e., 
process transformation models may be derived through regression or machine 
learning. In any case, Optimization assumes that for each process unit there exists 
a modelling of how it transforms input into output; analytics should provide such 
models for all process units where there exist data to do so. 

• Modelling specific values critical for the production. Production processes can 
contain complex steps the properties of which are hard to fully anticipate. For 
example, in the BRC case it is hard to know how long the processing of a batch of 
steel will take on the bending machine with the set parameters. Since this is critical 
for efficient scheduling of jobs, a reliable model is needed that can estimate runtimes 
of the jobs using machine learning from the data. 
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3 Analytics System Design 

This section presents the conceptual and methodological design of the analytics system (in 
section 3.1), including the relation to the other components of the FACTLOG platform, as 
well as the technical design (in section 3.2), including the high-level architecture and the list 
of tools and models identified to address the pilot requirements.  

3.1 Conceptual Design 

The analytics system provides fundamental functions that support the operation of the 
cognitive twins and its subsystems. Its services and models are the basic elements which 
are one of the building blocks of the cognitive processes. Their main role is to model 
components and processes from historical data when reliable or efficient models cannot be 
built based on theory and expert knowledge. 

High-level cognitive functions for detecting variations and understanding their causes and 
impacts require reliable models of manufacturing machinery and equipment as well as 
processes in manufacturing operation. To detect anomalies, we first need to understand 
what normal operation is; to determine root-causes of errors and problems, we need to have 
a way of figuring out what contextual influences impact the operation of the observed 
system; and to run optimisation of the manufacturing processes we need a way of knowing 
how its stages and components will behave with different inputs.  

The information needed by the cognitive functions such as those listed in the previous 
paragraph can be computed by using machine learning methodology. When historical data 
is available, a machine learning model can be built which predicts the target values. A wide 
array of modelling algorithms exists (for an overview see section 3.2), but at a high-level 
their operation can be summarised into two main actions: 

• Learning – This is the initial step when historical learning data is input into the 
algorithm and a model is produced as the output. The data is comprised of a set of 
examples, each containing a set of context variables and the target variable that 
needs to be predicted. For example, the context variables can be the settings of a 
machine and the properties of a piece of raw material and the target variable the time 
the machine needs to process the piece at the given settings. In the case of streaming 
data, this step is periodically repeated to keep the model aligned with the current 
data. 

• Prediction – This is the operational step after the model has been fit to the data in 
the learning step. The model is queried with a novel set of context variables, not 
necessarily seen before in the historical data, and the model predicts the target 
variable. Note that the predicted value can be categorical (e.g. a “good” or “defective” 
product) or numerical (e.g. the processing time will be 13 minutes). Some algorithms 
can also provide the estimated confidence for the result.  

By linking together models for individual stages of a process such as a production line, we 
can build a larger model capable of holistic simulation the production process. In such a 
setup the outputs of the previous stage along with the settings of the current stage represent 
the input for the model of the current stage and the outputs of the model of the current stage 
are used as input for the model of the next stage. Let’s take for example the simplified 
version of the JEMS synthetic fuel plant (Figure 6). By building models of the three stages 
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based on historic data and chaining them together we can simulate the whole workflow and 
predict the properties of the fuel from the properties of the input feedstock and the settings 
of the individual stages. 

 

Figure 6: Simplified workflow in the JEMS synthetic fuel plant. 

By following the Monte Carlo principle and running several such simulations by adding small 
perturbations in the inputs/outputs and settings to take into account possible errors and 
noise we can determine the most likely outcomes of the process. Having this prediction 
computed in advance, we can compare it to the sensor readings of the actual plant and raise 
an anomaly alert when they deviate significantly from the predicted values. By following the 
deviations back through the system, we can highlight the most likely root-causes of the 
anomaly. 

Anomalies can also be detected by observing the historical data and identifying the typical 
states of the manufacturing system we are observing. By using clustering algorithms on the 
historical sensor values we can identify the typical states of the system and its transitions 
between them. When the system deviates from these states or transitions between them in 
an unlikely way an anomaly alert can be raised. 

3.1.1 Relation to other FACTLOG components 
The analytics system is well connected to other FACTLOG components. Some depend on 
its prediction outputs and some provide inputs for its algorithms. In this subsection the 
relations to the three main operational components (illustrated on Figure 7) are detailed. 

 

Figure 7: Relations between analytics and the three other operational FACTLOG component 
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Cognitive twins (WP3) 

Analytics services are a building block of the cognitive twins. The full scale of the cognitive 
factory model and the explanation of its cognitive nature is beyond the scope of this 
document and will be described in detail in the deliverables from WP3. The analytics 
services play a role in the cognitive core of the cognitive framework (shown in Figure 8) – 
namely in reasoning, data cleaning and analysis and simulation and prediction services. 

 

Figure 8: FACTLOG cognitive framework 

In this document it is enough to take a more practically-oriented view in which the cognitive 
functions are higher-level and target specific operational goals. For example, running a 
predictive maintenance service for a factory needs analytics to process real-time sensor 
readings to identify an upcoming mechanical failure based on the historical experience. 
However, besides that it also needs the knowledge base to find out how the predicted failure 
impacts the shop floor and production plans and optimisation services to determine how to 
best plan the repairs needed. 

Knowledge graphs and process modelling (WP4) 

The data processed by the analytics services does not exist in a vacuum. Though the 
individual algorithms may in the end process a table of features, the preparation of this table 
along with the algorithm parameters depend strongly on the context, as does the 
interpretation of the results. This contextual data is stored in the knowledge graph which 
acts as the repository of data and settings. To put it directly, the knowledge graph is a data 
source for the analytics system. For example, it can answer questions such as:  

- what is the acceptable error level of individual models;  
- how often do we re-train the models for a system in operation whose state may be 

changing slowly with time;  
- which of the sensors are relevant for the model?  
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The process models are similar to the analytics models in that they are representations of 
some of the same processes that are modelled in analytics based on past data. However, 
the process models are built using expert knowledge and theory. In many cases, the 
analytics models are used when such models cannot be built or are too costly. The analytics 
system can use them as priors for learning (for example in cases where the theoretical 
model may not sufficiently cover noise present in the operational system). The analytics 
models also need to be able to work together with the process models. For example, if we 
assume that when modelling the production line in Figure 6 we’d have a process model for 
stage 2 and analytics models for stages 1 and 3, we need to be able to chain them (i.e. use 
the outputs of one in another) to simulate the operation of the entire line. 

Optimisation (WP5) 

The optimisation algorithms search the configuration spaces of the domains where they run 
to determine the best configuration based on some criteria. In the context of manufacturing 
this can be the set of machine parameters or the order of jobs to perform on a production 
line or a combination of similar spaces. In this search they need reliable information on 
domain elements. For example, how long would a particular job take on a machine with the 
given input or how much material would a machine process per hour with the given settings. 
Analytics can provide some of these values based on historic data when they are otherwise 
not clear. Optimisation can query the analytics models during operation to ensure reliability 
and efficiency.  

3.2 Technical Design 

FACTLOG analytics system technical design is devised as a loosely coupled architecture. 
In order to avoid tight coupling, we make use of messaging queues and define a REST API 
interface. Both provide a uniform communication interface to underlying services and enable 
other users and services to consume them based on required resources or expected 
functionalities, abstracting them from the specific underlying architecture, services 
arrangement and infrastructure required to scale them.  

Messaging queues enable to publish data ingested from data sources as well as data 
regarding state or computation results from any service, making it available to parties of 
interest that subscribe to the corresponding topics. Data of interest is also consumed by a 
persistence service, which stores it into a database so that can be later accessed for 
different purposes, such as analytics or eventually replay a series of events if needed. 

This abstraction enables multiple services process the same data, even simultaneously if 
required, for different purposes. When doing so, streaming and batch processing can be 
applied, depending on use case requirements. This abstraction also enables proper 
decoupling from user interfaces, allowing not only to expose functionality through a web 
application, but also to build multiple tools, such as command line interfaces (CLI). 

The architecture of the analytics system is shown in the diagram in Figure 9. As described 
above the different tools from the two partners implementing analytics in the pilots, JSI and 
NISSA, are all set up from the same configuration repository (envisioned to be the 
knowledge graph from WP4) and ingest data from the same persistent storage. Their 
outputs are communicated to other components, CEP services and any visualisation and 
pilot-specific tools through the messaging queue. 
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Figure 9: The analytics system architecture 

In order to develop and maintain consistency across development and deployment 
environments, we make use of containerization technology, which allows to define isolated 
and predictable environments with software dependencies and runtime environment 
required by the application, that can be run anywhere. Containers provide an immutable 
definition of a service and its environment, so that multiple identical instances can be 
spawned without major effort. This has several benefits, such as versioning services with 
their runtime environment, and the reproducibility of issues across environments. In addition 
to this, we make use of standardized setup and runtime configurations for each service, 
persisted in JSON format, which are loaded into the containers and consumed by 
applications on start-up. 

3.2.1 Technical tools 
Below we describe some choices we made at technology level regarding tools, frameworks 
and platforms. FACTLOG services may use different sets of tools in order to achieve their 
purpose. The list provided in this section has been selected based on the pilot requirements 
described in sections 2.1 to 2.5.  

QMiner 

QMiner is an open-source analytics platform for real-time streams that may contain 
structured and unstructured data. It provides means for efficient storage, retrieval and 
analytics, while being able to respond in real-time. Written in C++, delivers strong 
performance to the users. QMiner was developed and is maintained at JSI and will serve as 
the basis for development of the analytics services. It contains fast and robust 
implementations of a wide variety of machine learning algorithms but can be further 
extended if needs arise. 
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scikit-multiflow 

Is a machine learning library, focused on streaming algorithms, which allow to efficiently 
process streams, consuming limited memory and resources when doing so. Provides 
multiple algorithm implementations that enable incremental and adaptive learning. These 
algorithms incorporate means to detect changes in incoming data distribution, and thus can 
adapt how they learn. Among others, it provides implementations for the following 
algorithms: streaming linear regression, Hoeffding trees, Fast Incremental Model Trees with 
Drift Detections (FIMT-DD) and incremental versions of support vector machines (SVM) and 
neural networks. 

ml-rapids 

scikit-multiflow is one of the rare libraries that implements streaming algorithms in Python. 
According to our preliminary tests the library is, however, quite slow and includes inefficient 
implementations of the models. An in-house library, called ml-rapids, has been developed 
recently that implements some of the incremental learning models in C++ and exposes them 
via scikit-learn interface to Python or NodeJS. 

scikit-learn 

One of leading machine learning frameworks for batch learning algorithms. Provides 
implementations for data pre-processing, multiple algorithms such as logistic regression, 
SVM and random forest, and metrics to measure model’s performance. Algorithms are 
implemented in Python, Cython, C and C++, ensuring great performance while still providing 
a great high-level interface to ease programming. 

Probabilistic Soft Logic 

Probabilistic Soft Logic is a statistical relational learning framework that provides means to 
model probabilistic and relational domains. Combines first-order logic and probabilistic 
graphical models (Markov random fields), being thus able to express complex phenomena 
as well as incompleteness and its derived uncertainty that we observe in the real world. By 
using soft logic, is able to reduce time complexity when computing results to a given query. 
In the context of FACTLOG, this framework is interesting as is can easily consume 
background knowledge from a knowledge graph and then perform global inference on 
incomplete data. In our specific case, we make use of the implementation provided by the 
University of Maryland and the University of California Santa Cruz. 

Qlector LEAP 

Qlector LEAP is a platform that provides solutions to many challenges faced by 
manufacturers, such as identify anomalies along production lines, predict organisational 
downtimes, provide demand forecasting and create schedules for planners and team 
coordinators in order to save time. This is achieved by using state-of-the-art artificial 
intelligence algorithms and by properly contextualizing obtained insights. A web user 
interface is provided to visualize KPIs, shop-floor layouts with metrics overlays, multiple 
analytics graphs as well as suggested actions that can be taken to mitigate detected issues. 
Access to different dashboards and platform functionalities is restricted based on users’ 
profiles, considering their access level and manufacturing entities of interest. Mobile 



D2.1 Analytics System Requirements and Design Specification V1.1 

 

 

32 

notifications are issued to relevant actors, so that they can react on real time to issues 
identified in the platform.  

3.2.2 Algorithms and models 
In order to process the data, we make use of several algorithms and models from the fields 
of data analysis and machine learning. Below we describe a selection of those that we deem 
applicable to the FACTLOG pilots, making a distinction between batch and streaming 
algorithms. 

Batch algorithms 

• Logistic regression: models the probability of certain class computing the log-
likelihood function on top of observations, considering they are independently 
Bernoulli distributed. Log-likelihood is maximized through gradient descent. 

• SVM: is a non-probabilistic machine learning method that can be used for 
classification or regression. The algorithm constructs a hyperplane, where the vectors 
defining the hyperplanes are linear combinations with parameters of images of 
feature vectors. Points in the feature space are mapped to the hyperplane through 
the kernel function equalling a constant, property that can be used to understand how 
close test points from observed points in the train set are. 

• RNN: are a specific architecture of neural networks, where connections between 
nodes allow to capture temporal dynamic behaviour. Can be used to predict future 
values, classify different time series as well as to produce a vector encoding of time 
sequences (auto-encoders). 

• LSTM: are a specific architecture of neural networks, which contain feedback 
connections that enable processing sequences of data. LSTMs feature four 
components: a cell, an input gate, an output gate and a forget gate. Each cell has the 
responsibility of remembering values for arbitrary time intervals. The input gate 
receives new data, the forget gate is tasked with keeping memory of past states, 
while the output gate delivers some processing result. 

• Monte Carlo simulation: are a family of algorithms that make use of random 
sampling that can be used to solve problems with a probabilistic interpretation, such 
as optimization or problems to be solved by generating draws from a probability 
distribution. Given a domain of possible inputs and a probability distribution of inputs, 
Monte Carlo algorithms require to generate random samples for inputs and perform 
some deterministic computation on them, to later aggregate results. Qlector LEAP 
implements this approach in multiple use cases. One of them is to provide accurate 
estimates and confidence intervals when estimating production plan termination 
dates. 

Stream algorithms 

• Linear regression: statistical algorithm that models a linear relationship between 
multiple explanatory variables and a scalar response. 

• Hoeffding trees: are a specific implementation of classification and regression trees, 
which make use of the Hoeffding bound in order to decide if and when a node should 
be split. It assumes that the data distribution does not change over time.  

• FIMT-DD: are a specific implementation of classification and regression trees that are 
able to learn from time-changing data streams, performing explicit change detection 
and the consequent adaptation. 
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• Artificial neural networks: models which consist of a set of simulated neurons, that 
can be used for classification or regression. The simulated neurons receive an input, 
have a set of weights which they adjust with every new training example using the 
backpropagation algorithm and then apply a non-linear transformation (activation 
function), before outputting to the following layer. Architectures have an input layer, 
one or more intermediate (hidden) layers and an output layer. 
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Appendix I – JEMS Data 

Values returned by the sensors in the JEMS waste processing plant are described in the 
table below. 

Table 2: JEMS data features 

Name Description Value Type Unit Frequency 

ES_104-01 Service switch status BOOL   5 

EA_104-01 Lime conveyor status BOOL   5 

XS_104-01 Start/Stop for Lime BOOL   5 

SC_104-01 Motor for climatization speed BOOL % 5 

ES_103-01 Service switch status BOOL   5 

EA_103-01 Lime conveyor status BOOL   5 

XS_103-01 Start/Stop for catalyst BOOL   5 

SC_103-01 Motor for climatization speed BOOL % 5 

LSH_500-02 High level in tank D500 BOOL   5 

LSL_500-02 Low level in tank D500 BOOL   5 

ES_500-01 Service switch status BOOL   5 

EA_500-01 Lime conveyor status BOOL   5 

XS_500-01 Start/Stop for Conveyor to P100 BOOL   5 

SC_103-01 Motor for climatization speed BOOL % 5 

TIC_100_12 Temperature in mixer vessel P100 REAL °C 5 

TIC_100_13 Temperature in evaporating column P100 REAL °C 5 

TIC_100_14 Temperature in evaporating column P100 REAL °C 5 

TIC_100_15 Temperature in evaporating column P100 REAL °C 5 

TIC_100_16 Temperature in evaporating column P100 REAL °C 5 

LSH_100-87 High level in tank P100 BOOL   5 

LSL_100-84 Low level in tank P100 BOOL   5 

LSM_100-85 Medium level in tank P100 BOOL   5 

TSA_100-72 Thermostat in mixer P100 status BOOL   5 

pH_100-50 pH Measurement REAL pH 1 

SC_100-21 Motor for mixer p100 BOOL % 5 

XS_100-21 Start/Stop mixer P100 BOOL   5 

EA_100-21 Mixer P100 status BOOL   5 

YC_100-21 Torque measurement REAL Nm   

LC1_100-25 Load cell P100 REAL kg   

LC2_100-26 Load cell P100 REAL kg   

LC3_100-27 Load cell P100 REAL kg   

ZSO_500-03 Knife between D500 and P100 - Opened BOOL   5 

ZSC_500-03 Knife between D500 and P100 - Closed BOOL   5 

ZSO_100-77 Valve back to P100 - Opened BOOL   5 

ZSC_100-77 Valve back to P100 - Closed BOOL   5 

ZSO_100-78 Valve from P100 to P120 - Opened BOOL   5 

ZSC_100-78 Valve from P100 to P120 - Closed BOOL   5 



D2.1 Analytics System Requirements and Design Specification V1.1 

 

 

35 

TIC_100-80 Temperature on output of cooler REAL °C 5 

TIC_100-81 Temperature on return to cooler REAL °C 5 

ZI_120-54 Outlet valve from P100 to P120 - Position indicator REAL %   

ZSO_120-54 Outlet valve from P100 to P120 - Opened BOOL   5 

ZSC_120-54 Outlet valve from P100 to P120 - Closed BOOL   5 

XSD_120-54 Outlet valve from P100 to P120 - Direction  BOOL     

ZI_120-53 Outlet valve from P100 to P200 - Position indicator REAL %   

ZSO_120-53 Outlet valve from P100 to P200 - Opened BOOL   5 

ZSC_120-53 Outlet valve from P100 to P200 - Closed BOOL   5 

XSD_120-53 Outlet valve from P100 to P200 - Direction  BOOL     

SC_100-80 Motor for pump P100-80 BOOL % 5 

XS_100-80 Start/Stop for pump P100-80 BOOL   5 

ZI_100-79 Outlet valve from P100 to P120 - Position indicator REAL %   

ZSO_100-79 Outlet valve from P100 to P120 - Opened BOOL   5 

ZSC_100-79 Outlet valve from P100 to P120 - Closed BOOL   5 

XSD_100-79 Outlet valve from P100 to P120 - Direction  BOOL     

ZI_100-52 Outlet valve from P200 to P120 - Position indicator REAL %   

ZSO_100-52 Outlet valve from P200 to P120 - Opened BOOL     

ZSC_100-52 Outlet valve from P200 to P120 - Closed BOOL   5 

XSD_100-52 Outlet valve from P200 to P120 - Direction  BOOL     

SC_120-81 Motor for pump from P120 to P120 BOOL % 5 

XS_120-81 Start/Stop for pump from P120 to P120 BOOL   5 

LC1_120-56 Load cell P120 REAL kg   

LC2_120-57 Load cell P120 REAL kg   

LC3_120-58 Load cell P120 REAL kg   

TSA_120-72 Thermostat in mixer P120 status BOOL   5 

LSH_120-87 High level in tank P120 BOOL   5 

LSL_120-84 Low level in tank P120 BOOL   5 

LSM_120-85 Medium level in tank P120 BOOL   5 

TIC_120_27 Temperature in vessel P120 REAL °C 5 

TIC_120_28 Temperature in evaporating column P120 REAL °C 5 

TIC_120_29 Temperature in evaporating column P120 REAL °C 5 

TIC_120_30 Temperature in evaporating column P120 REAL °C 5 

TIC_120_32 Temperature in evaporating column P120 REAL °C 5 

TIC_120_33 Temperature in evaporating column P120 REAL °C 5 

ZSO_120-77 Valve back to P100 - Opened BOOL   5 

ZSC_120-77 Valve back to P100 - Closed BOOL   5 

ZSO_120-78 Valve from P120 to P200 - Opened BOOL   5 

ZSC_120-78 Valve from P120 to P200 - Closed BOOL   5 

XSD_100-78 Valve from P120 to P200 - Direction  BOOL     

SC_120-80 Motor for pump P120-80 BOOL % 5 

XS_120-80 Start/Stop for pump P120-80 BOOL   5 

LSH_200-87 High level in tank P200 BOOL   5 

LSL_200-84 Low level in tank P200 BOOL   5 
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LSMH_200-86 Medium high level in tank P200 BOOL   5 

LSML_200-85 Medium low level in tank P200 BOOL   5 

LC1_200-15 Load cell P120 REAL kg   

LC2_200-16 Load cell P120 REAL kg   

LC3_200-17 Load cell P120 REAL kg   

TIC_200_27 Temperature in mixer vessel 200 REAL °C 5 

TIC_200_28 Temperature in evaporating column P200 REAL °C 5 

TIC_200_29 Temperature in evaporating column P200 REAL °C 5 

TIC_200_32 Temperature in evaporating column P200 REAL °C 5 

TIC_200_33 Temperature in evaporating column P200 REAL °C 5 

TSA_120-72 Thermostat in mixer P200 status BOOL   5 

ES_200-75 Service switch status pump 200-75 BOOL   5 

EA_200-75 Pump 200-75 status BOOL   5 

XS_200-75 Start/Stop for pump 200-75 BOOL   5 

SC_200-75 Motor for pump 200-75 BOOL % 5 

PIC_200-29 Pressure in process tank P200 REAL bar 5 

ZSO_200-52 Outlet valve from P200 to turbine 106 - Opened BOOL   5 

ZSC_200-52 Outlet valve from P200 to turbine 106 - Closed BOOL   5 

XSD_200-52 Outlet valve from P200 to turbine 106 - Direction  BOOL     

ZI_200-52 Outlet valve from P200 to turbine 106 - Position indicator REAL %   

ZSO_200-14 Outlet valve from P200 to P400 - Opened BOOL   5 

ZSC_200-14 Outlet valve from P200 to P400 - Closed BOOL   5 

XSD_200-14 Outlet valve from P200 to P400 - Direction  BOOL     

ZI_200-14 Outlet valve from P200 to P400 - Position indicator REAL %   

ZSO_200-67 Outlet valve from P200 to turbine 108 - Opened BOOL   5 

ZSC_200-67 Outlet valve from P200 to turbine 108 - Closed BOOL   5 

XSD_200-67 Outlet valve from P200 to turbine 108 - Direction  BOOL     

ZI_200-67 Outlet valve from P200 to turbine 108 - Position indicator REAL %   

EA_106-10 Turbine 106 status BOOL   5 

XS_106-10 Start/Stop for Turbine 106 BOOL   5 

SC_106-10 Motor for Turbine 106 BOOL % 5 

EA_108-10 Turbine 108 status BOOL   5 

XS_108-10 Start/Stop for Turbine 108 BOOL   5 

SC_108-10 Motor for Turbine 108 BOOL % 5 

PIC_106-11 Pressure in turbine 106 REAL bar 5 

PIC_108-11 Pressure in turbine 108 REAL bar 5 

PIC_106-04 Pressure from turbine 106 back to P200 REAL bar 5 

PIC_108-04 Pressure from turbine 108 back to P200 REAL bar 5 

ZSO_106-12 Outlet valve from turbine 106 back to P200 - Opened BOOL   5 

ZSC_106-12 Outlet valve from turbine 106 back to P200 - Closed BOOL   5 

ZSO_108-12 Outlet valve from turbine 106 back to P200 - Opened BOOL   5 

ZSC_108-12 Outlet valve from turbine 106 back to P200 - Closed BOOL   5 

ZSO_120-51 Outlet valve from turbine 106 back to P100 - Opened BOOL   5 

ZSC_120-51 Outlet valve from turbine 106 back to P100 - Closed BOOL   5 
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LC1_400-25 Load cell P400 REAL kg   

LC2_400-26 Load cell P400 REAL kg   

LC3_400-27 Load cell P400 REAL kg   

TSA_400-72 Thermostat in mixer P400 status BOOL   5 

LSH_400-87 High level in tank P120 BOOL   5 

LSL_400-84 Low level in tank P120 BOOL   5 

PIC_400-29 Pressure in spare tank P400 REAL bar 5 

XS_120-81 Start/Stop for pump from and into spare tank P400 BOOL   5 

SC_120-81 Motor for pump from and into spare tank P400 BOOL % 5 

ZSO_400-17 Outlet valve from P400 to P100 - Opened BOOL   5 

ZSC_400-17 Outlet valve from P400 to P100 - Closed BOOL   5 

XSD_400-17 Outlet valve from P400 to P100 - Direction  BOOL     

ZI_400-17 Outlet valve from P400 to P100 - Position indicator REAL %   

ZSO_400-15 Outlet valve from P400 to P100 - Opened BOOL   5 

ZSC_400-15 Outlet valve from P400 to P100 - Closed BOOL   5 

XSD_400-15 Outlet valve from P400 to P100 - Direction  BOOL     

ZI_400-15 Outlet valve from P400 to P100 - Position indicator REAL %   

ZSO_400-21 Outlet valve from P400 to P100 - Opened BOOL   5 

ZSC_400-21 Outlet valve from P400 to P100 - Closed BOOL   5 

XSD_400-21 Outlet valve from P400 to P100 - Direction  BOOL     

ZI_400-21 Outlet valve from P400 to P100 - Position indicator REAL %   

ES_400-03 Service switch status pump 400-03 BOOL   5 

EA_400-03 Pump 400-03 status BOOL   5 

XS_400-03 Start/Stop for pump 400-03 BOOL   5 

SC_400-03 Motor for pump 400-03 BOOL % 5 

ZSO_206-01 Valve to P300 - Opened BOOL   5 

ZSC_206-01 Valve to P300 - Closed BOOL   5 

XSD_206-01 Valve to P300 - Direction  BOOL     

ZI_206-01 Valve to P300 - Position indicator REAL %   

LSH_300-87 High level in tank P300 BOOL   5 

LSL_300-84 Low level in tank P300 BOOL   5 

LSMH_300-86 Medium high level in tank P300 BOOL   5 

LSML_300-85 Medium low level in tank P300 BOOL   5 

LC1_300-56 Load cell P300 REAL kg   

LC2_300-57 Load cell P300 REAL kg   

LC3_300-58 Load cell P300 REAL kg   

TSA_300-80 Thermostat in mixer P300 status BOOL   5 

PIC_300-29 Pressure in second destilation tank P300 REAL bar 5 

TIC_300_27 Temperature in vessel P300 REAL °C 5 

TIC_300_91 Temperature in vessel P300 REAL °C 5 

TIC_300_28 Temperature in evaporating column P300 REAL °C 5 

TIC_300_29 Temperature in evaporating column P300 REAL °C 5 

TIC_300_30 Temperature in evaporating column P300 REAL °C 5 

TIC_300_32 Temperature in evaporating column P300 REAL °C 5 
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TIC_300_33 Temperature in evaporating column P300 REAL °C 5 

ZSO_300-72 Valve from P300 to P400 - Opened BOOL   5 

ZSC_300-72 Valve from P300 to P400 - Closed BOOL   5 

YC_300-21 Torque measurement  REAL Nm   

EA_300-21 Mixer in P300 status BOOL   5 

XS_300-21 Start/Stop for mixer in 3400 BOOL   5 

SC_300-21 Motor for mixer in P300 BOOL % 5 

LSH_301-22 High level in tank P301 BOOL   5 

LSL_301-21 Low level in tank P301 BOOL   5 

LC1_301-28 Load cell P301 REAL kg   

LC2_301-29 Load cell P301 REAL kg   

LC3_301-30 Load cell P301 REAL kg   

FQIR Diesel flow REAL l 5 

PIC_301-24 Pressure before storage tank REAL bar 5 

EA_301-20 Pump P301-20 status BOOL   5 

XS_301-20 Start/Stop for pump P301-20 BOOL   5 

SC_301-20 Motor for pump P301-20 BOOL % 5 

PIC_301-23 Pressure before P301 REAL bar 5 

LC1_202-51 Load cell P202 REAL kg   

LC2_202-52 Load cell P202 REAL kg   

LC3_202-53 Load cell P202 REAL kg   

LSH_202-22 High level in tank P202 BOOL   5 

LSL_202-21 Low level in tank P202 BOOL   5 

PIC_202-23 Pressure in raw diesel tank P202 REAL bar 5 

PIC_202-44 Pressure after P202-25 REAL bar 5 

EA_202-20 Pump from P202 status BOOL   5 

XS_202-20 Start/Stop for Pump from P202 BOOL   5 

SC_202-20 Motor for pump from P202 BOOL % 5 

EA_202-25 Pump from P202 status, flushing BOOL   5 

XS_202-25 Start/Stop for Pump from P202, flushing BOOL   5 

SC_202-25 Motor for pump from P202, flushing BOOL % 5 

XS_202-47 Start/Stop for Pump from P202, flushing BOOL   5 

SC_202-47 Motor for pump from P202, flushing BOOL % 5 

LC1_201-27 Load cell P201 REAL kg   

LC2_201-28 Load cell P201 REAL kg   

LC3_201-29 Load cell P201 REAL kg   

LSH_201-22 High level in tank P201 BOOL   5 

LSL_201-21 Low level in tank P201 BOOL   5 

PIC_201-23 Pressure in water tank P201 REAL bar 5 

PIC_202-44 Pressure after P201-20 REAL bar 5 

XS_201-20 Start/Stop for Pump from P201 BOOL   5 

SC_201-20 Motor for pump from P201 BOOL % 5 

EA_201-20 Pump from P201 status BOOL   5 
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Appendix II – Tupras Data 

This appendix contains the meta-information about the Tupras dataset, the naming schema 
of their features and an example of the dataset. 

The process features follow the naming schema in Table 3 below. 

Table 3: The standard naming schema of the process tags which are used in the Tüpraş İzmit Refinery. 

Plant 
Name 

Data Source 
Type 

Transmitter 
ID 

Extension 

0 XIC* 000 

.PV Process Value 

.SV 
Set Value of Controller 
(Yokogawa DCS) 

.MV 
Output Value of the Controller 
(Yokogawa DCS) 

.SP 
Set Value of Controller  
(Honeywell DCS) 

.OP 
Output Value of the Controller 
(Honeywell DCS) 

 
Plant 
Name 

Data Source 
Type 

Transmitter 
ID 

Extension 

0 XI* 000 .PV 
Process Value 
(same for all DCS types) 

 
X = F: flow, P: pressure, T: temperature, L: level 
 

The naming of the data features that belong to LPG storage tank data follows the naming 

schema described below: 

TPHTK: means it is a tank tag 

XXX: id of the tank (LPG tank numbers: 302, 303, 304, 321, 322, 323, 324, 325, 326, and 

327)  

______: which value do you want to see 

T P H T K X X X _______. P V  

TPHTK 
302/303/304/* 
321/322/323/ 

324/325/326/327 

FLOW* 

.PV 
TEMPERATURE* 

LEVEL* 

MASS 
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PRESSURE 

STANDARD_DENSITY 

VOLUME_AVAILABLE_NET 
* 302/303/304 only have flow, temperature and level sensors. 

The features coming from the online analyzers are named according to the following 
schema: 

AI: Analyzer Indicator 

XXXXX: Analyzer ID 

Root.GA3.177/ Root.GA1.147: Process unit where analyzer located 

R o o t . G A 3 . 1 7 7 A I X X X X X . P V . V a l u e  

R o o t . G A 1 . 1 4 7 A I X X X X X . P V . V a l u e  

 

The features coming from the laboratory analyses are named according to the following 
schema: 

0 2 X X X L P G X X  
02: Meaning it is a lab tag 

XXX: Unit Name 

XX: the abbreviation of the tested product/species (i.e. P: propane) 

The table below, shows LPG raleted lab tags of plant-5 (CDU Debut 2) 

025LPG13 PLT 5-LPG-1-3 BUTADIEN 025LPGM PLT 5-LPG-METAN 

025LPGB1 PLT 5-LPG-BUTEN1 025LPGNB PLT 5-LPG-NBUTAN 

025LPGC2 PLT 5-LPG-C2 BUTEN 025LPGNP PLT 5-LPG-NPENTAN 

025LPGC21 PLT 5-LPG-C2 025LPGP PLT 5-LPG-PROPAN 

025LPGC51 PLT 5-LPG-C5 025LPGPP PLT 5-LPG-PROPILEN 

025LPGET PLT 5-LPG-ETAN 025LPGRVP1 PLT 5-LPG-RVP 

025LPGIB PLT 5-LPG-ISOBUTAN 025LPGT2 PLT 5-LPG-T2 BUTEN 

025LPGIBL PLT 5-LPG-ISOBUTILEN 025LPGIP PLT 5-LPG-ISOPENTAN 

 

Examples of data structure for all the data types are given in Table 4, Table 5, Table 6 and 
Table 7.
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Table 4: Process sensors data example 

 

Table 5: Lab analysis data example 

 

 

Table 6: Online analyzer data example 

Process Sensors
CDU_2 MQD

2FIC350.PV 2FIC350.SV 2FIC350.MV 5TI496.PV 25TIC46.PIDA.PV 25TIC46.PIDA.SP 25TIC46.PIDA.OP 63FI1059.PV

Tag name 2FIC350.PV 2FIC350.SV 2FIC350.MV 5TI496.PV 25TIC46.PIDA.PV 25TIC46.PIDA.SP 25TIC46.PIDA.OP 63FI1059.PV

Unit of Measurement M3/D M3/D % DEGC M3/HR

Description 2C-5 SARJ 2C-5 SARJ 2C-5 SARJ HAD BUHAR   CIKIS DEBUT. SARJ GIRIS SIC. DEBUT. SARJ GIRIS SIC. DEBUT. SARJ GIRIS SIC. 63G101 AB CIKIS DEBUT.'A SARJ

The time interval can be longer. Up to 2 years. The 

frequency of all the FI/FIC/PI/PIC/TI/TIC is data 

point/sec TimeStamp 2FIC350.PV - Snapshot - Value 2FIC350.SV - Snapshot - Value 2FIC350.MV - Snapshot - Value 5TI496.PV - Snapshot - Value 25TIC46.PIDA.PV - Snapshot - Value 25TIC46.PIDA.SP - Snapshot - Value 25TIC46.PIDA.OP - Snapshot - Value 63FI1059.PV - Snapshot - Value

28/07/2020 14:54

28/07/2020 14:55

28/07/2020 14:56

28/07/2020 14:57

FCC

36PIC347.PIDA.PV 36PIC347.PIDA.SP 36PIC347.PIDA.OP 7PI504.PV Root.GA3.177TI2714.PV.Value Root.GA3.177FIC2608.PV.Value Root.GA3.177FIC2608.SV.Value Root.GA3.177FIC2608.MV.Value

Tag name 36PIC347.PIDA.PV 36PIC347.PIDA.SP 36PIC347.PIDA.OP 7PI504.PV Root.GA3.177TI2714.PV.Value Root.GA3.177FIC2608.PV.Value Root.GA3.177FIC2608.SV.Value Root.GA3.177FIC2608.MV.Value

Unit of Measurement KG/CM2 C Sm3/d Sm3/d %

Description DEBUT TEPE  BASINCI DEBUT TEPE  BASINCI DEBUT TEPE  BASINCI 7C-501 TEPE BASINCI C203  TEPE SICAKLIK G204AB CIKISAKIM G204AB CIKISAKIM G204AB CIKISAKIM

The time interval can be longer. Up to 2 years. The 

frequency of all the FI/FIC/PI/PIC/TI/TIC is data 

point/sec TimeStamp

36PIC347.PIDA.PV - Snapshot - 

Value

36PIC347.PIDA.SP - Snapshot - 

Value

36PIC347.PIDA.OP - Snapshot - 

Value 7PI504.PV - Snapshot - Value

Root.GA3.177TI2714.PV.Value - 

Time Average - Value

Root.GA3.177FIC2608.PV.Value - 

Time Average - Value

Root.GA3.177FIC2608.SV.Value - 

Time Average - Value

Root.GA3.177FIC2608.MV.Value 

- Time Average - Value

28/07/2020 14:54

28/07/2020 14:55

28/07/2020 14:56

28/07/2020 14:57

numeric data 

CDU_1 CDU_3

numeric data numeric data numeric data numeric data numeric data numeric data numeric data 

numeric data numeric data numeric data 

Platformer_2 DCU

numeric data numeric data numeric data numeric data numeric data 

Lab Analysis
Tag name 025LPG13 025LPGB1 025LPGC2 025LPGC21 025LPGC51 025LPGET 025LPGIB 025LPGIBL

Unit of Measurement %(V/V) %(V/V) %(V/V) %(V/V) %(V/V) %(V/V) %(V/V) %(V/V)

Description PLT 5-LPG-1-3 BUTADIEN PLT 5-LPG-BUTEN1 PLT 5-LPG-C2 BUTEN PLT 5-LPG-C2 PLT 5-LPG-C5 PLT 5-LPG-ETAN PLT 5-LPG-ISOBUTAN PLT 5-LPG-ISOBUTILEN

Value Type TimeStamp 025LPG13 - Raw - Value 025LPGB1 - Raw - Value 025LPGC2 - Raw - Value 025LPGC21 - Raw - Value 025LPGC51 - Raw - Value 025LPGET - Raw - Value 025LPGIB - Raw - Value 025LPGIBL - Raw - Value

17/05/2019 06:00

19/05/2019 06:00

21/05/2019 06:00

24/05/2019 06:00

28/05/2019 06:00

31/05/2019 06:00

02/06/2019 06:00

Tag name 025LPGIP 025LPGM 025LPGNB 025LPGNP 025LPGP 025LPGPP 025LPGRVP1 025LPGT2

Unit of Measurement %(V/V) %(V/V) %(V/V) %(V/V) %(V/V) %(V/V) KPA %(V/V)

Description PLT 5-LPG-ISOPENTAN PLT 5-LPG-METAN PLT 5-LPG-NBUTAN PLT 5-LPG-NPENTAN PLT 5-LPG-PROPAN PLT 5-LPG-PROPILEN PLT 5-LPG-RVP PLT 5-LPG-T2 BUTEN

Value Type TimeStamp 025LPGIP - Raw - Value 025LPGM - Raw - Value 025LPGNB - Raw - Value 025LPGNP - Raw - Value 025LPGP - Raw - Value 025LPGPP - Raw - Value 025LPGRVP1 - Raw - Value 025LPGT2 - Raw - Value

17/05/2019 06:00

19/05/2019 06:00

21/05/2019 06:00

24/05/2019 06:00

28/05/2019 06:00

31/05/2019 06:00

02/06/2019 06:00

numeric data numeric data numeric data numeric data numeric data numeric data numeric data numeric data 

numeric data numeric data numeric data numeric data numeric data numeric data numeric data numeric data 
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Table 7: Tank sensors data example 

Online Analyzer
Tag name Root.GA3.177AI2901A.PV.Value Root.GA3.177AI2901B.PV.Value Root.GA3.177AI2901C.PV.Value Root.GA3.177AI2701A.PV.Value Root.GA3.177AI2701B.PV.Value Root.GA1.147AI1004A.PV.Value

Unit of Measurement ppmv %V %V %wt ppmv %

Description LPG H2S     ANALIZOR LPG C2      ANALIZOR LPG C5      ANALIZOR FUEL GAZ    H2 ANALIZORU FUEL GAZ    H2S ANALZORU LPG C2        ANALIZORU

Value Type TimeStamp

Root.GA3.177AI2901A.PV.Value - 

End - Value

Root.GA3.177AI2901B.PV.Value - 

End - Value

Root.GA3.177AI2901C.PV.Value - 

End - Value

Root.GA3.177AI2701A.PV.Value - 

End - Value

Root.GA3.177AI2701B.PV.Value - 

End - Value

Root.GA1.147AI1004A.PV.Value - 

End - Value

09/08/2020 11:10

09/08/2020 11:11

09/08/2020 11:12

09/08/2020 11:13

09/08/2020 11:14

09/08/2020 11:15

Tag name Root.GA1.147AI1004B.PV.Value Root.GA1.147AI1004C.PV.Value Root.GA1.147AI1004D.PV.Value Root.GA1.147AI1004E.PV.Value Root.GA1.147AI1004F.PV.Value

Unit of Measurement % % % % ppmv

Description LPG C3      ANALIZORU LPG IC4     ANALIZORU LPG NC4     ANALIZORU LPG C5      ANALIZORU LPG H2S     ANALIZORU

Value Type TimeStamp

Root.GA1.147AI1004B.PV.Value - 

End - Value

Root.GA1.147AI1004C.PV.Value - 

End - Value

Root.GA1.147AI1004D.PV.Value - 

End - Value

Root.GA1.147AI1004E.PV.Value - 

End - Value

Root.GA1.147AI1004F.PV.Value - 

End - Value

09/08/2020 11:10

09/08/2020 11:11

09/08/2020 11:12

09/08/2020 11:13

09/08/2020 11:14

09/08/2020 11:15

numeric data numeric data numeric data numeric data numeric data numeric data 

numeric data numeric data numeric data numeric data numeric data 

Tank Sensors
Tag name TPHTK325FLOW.PV TPHTK325GTEMPERATURE.PV TPHTK325LEVEL.PV TPHTK325MASS.PV TPHTK325MASS_AVAILABLE.PV TPHTK325PRESSURE.PV

Unit of Measurement M3/HR DEGC M TON TON KG/CM2

Description LPG LPG LPG LPG LPG GAZ BASINC

Value Type TimeStamp TPHTK325FLOW.PV - Raw - Value

TPHTK325GTEMPERATURE.PV - Raw 

- Value TPHTK325LEVEL.PV - Raw - Value TPHTK325MASS.PV - Raw - Value

TPHTK325MASS_AVAILABLE.PV - 

Raw - Value

TPHTK325PRESSURE.PV - Raw - 

Value

10/07/2020 17:50

10/07/2020 17:53

11/07/2020 11:56

11/07/2020 11:59

11/07/2020 12:02

11/07/2020 12:05

11/07/2020 12:08

Tag name TPHTK325STANDARD_DENSITY.PV TPHTK325TEMPERATURE.PV TPHTK325TOTAL_NET_VOLUME.PV TPHTK325TRANS_LEVEL_SETPOINT.SPTPHTK325VOLUME_AVAILABLE_NET.PV

Unit of Measurement KG/L DEGC M3 M M3

Description LPG LPG LPG LPG LPG

Value Type TimeStamp

TPHTK325STANDARD_DENSITY.PV - 

Raw - Value

TPHTK325TEMPERATURE.PV - Raw - 

Value

TPHTK325TOTAL_NET_VOLUME.PV - 

Raw - Value

TPHTK325TRANS_LEVEL_SETPOINT.

SP - Raw - Value

TPHTK325VOLUME_AVAILABLE_NET

.PV - Raw - Value

10/07/2020 17:50

10/07/2020 17:53

11/07/2020 11:56

11/07/2020 11:59

11/07/2020 12:02

11/07/2020 12:05

11/07/2020 12:08

numeric data numeric data numeric data numeric data numeric data numeric data 

numeric data numeric data numeric data numeric data numeric data 
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Appendix III – Piacenza Data 

This appendix contains the meta-information about the Piacenza dataset. 

Table 8: Description of the Piacenza data parameters 

DESCRIPTION DATA PROVIDER VALUE TYPE HISTOR. DATA MEASUREMENT 
DEVICE 

Planning data 
weaving department 

ERP/MES Schedule  / 

Planning data 
finishing department 

ERP/MES Schedule  / 

Energy consumption 
for looms 

Not available Numerical Not available Energy Meter (TBD) 

Theoretical energy 
consumption for 
looms 

Values derived from formula Numerical Not available / 

Energy consumption 
for finishing machines 

For a subset of machines for 
finishing  

RAMA1 - GAS (m3) + Energy 
(Kw/h) 

RAMA2 - GAS (m3) 

Numerical yes, 1 year Machine energy 
meter 

Absolute amount of 
energy consumption 
(per department; i.e. 
weaving/finishing) 

Weaving: Energy (Kw/h) 

Finishing: GAS (m3) + Energy 
(Kw/h) 

 

Numerical yes, 1 year Department Meter 

Absolute amount of 
energy consumption 
(whole plant) 

Energy (Kw/h) 

Finishing: GAS (m3) + Energy 
(Kw/h) 

Numerical yes, 1 year Department Meters 

HVAC consumptions 
(per department; i.e. 
weaving/finishing) 

Only air conditioning for 
department. 

 

Numerical yes, 1 year Meter 

Water cubic meters Only for finishing department Numerical yes, 1 year Meter 
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Appendix IV – Continental Data 

In this appendix you can find the Data types and limits for Continental pilot line. The features 
meta-information is listed in Table 9. The columns are: 

• TestName   - Name of each single test done, or process parameter provided 
     by the Equipment 

• Measured Value  - The value provided/measured by the Equipment 

• Result   - The result of the test/process step compared with the limits 

• LSL   - Lower limit of each test/process step 

• USL   - Upper limit of each test/process step 

• Format  - The type of the data (i.e. R6.2 – Real with max 6 digits before 
     the coma and 2 digits after the coma) 

Important note: There are also a lot of test steps from the Continental test equipment but 
are too many to be listed in this document. There are few thousands for each piece of test 
equipment depending on the products. All these types of data exist in the raw data provided 
by Continental. 

Table 9: Features for the Continental dataset 

TestName Measured 
Value 

Result LSL USL Format 

Force 5.2 P -9999 9999 R6.2 

Distance 55.3 P -9999 9999 R6.2 

Camera2 1 P 1 1 R6.2 

Quantity 131 P -9999 9999 R6.2 

RPM 3200 P -9999 9999 R6.2 

Tension 100 P -9999 9999 R6.2 

Frequency 13 P -9999 9999 R6.2 

Intensity 10 P -55 9999 R6.2 

Height1 5 P -9999 9999 R6.2 

Height2 3 P -9999 9999 R6.2 

Height3 6 P -9999 9999 R6.2 

Height4 5 P -9999 9999 R6.2 

Height5 2 P -9999 9999 R6.2 

Height6 5 P -9999 9999 R6.2 

Height7 9 P -9999 9999 R6.2 

Torque1 132 P -9999 9999 R6.2 

Torque2 130 P -9999 9999 R6.2 

Torque3 102 P -9999 9999 R6.2 

Torque4 132 P -9999 9999 R6.2 

Torque5 131 P -9999 9999 R6.2 

Torque6 111 P -9999 9999 R6.2 

Torque7 92 P -9999 9999 R6.2 

Angle1 50 P -9999 9999 R6.2 

Angle2 56 P -9999 9999 R6.2 

Angle3 60 P -9999 9999 R6.2 
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Angle4 80 P -9999 9999 R6.2 

Angle5 50 P -9999 9999 R6.2 

Angle6 55 P -9999 9999 R6.2 

Angle7 50 P -9999 9999 R6.2 

ScrewingTime 15 P -9999 9999 R6.2 

Force1 0 P -9999 9999 R6.2 

Force2 0 P -9999 9999 R6.2 

Capacity 6614 P 5440 8160 R8.0 

Height1 1.71 P 1.2 2.2 R6.2 

Height2 1.55 P 1.2 2.2 R6.2 

Nest 5 P -999 999 R6.2 

NozzleTemp 216 P 200 220 R6.2 

Camera 0 P 0 0 R8.2 

GlueWeight 4.12 P 4 4.2 R6.2 

DispSpeed 80 P 0 200 R6.2 

Pin1X -34.5 P -34.9 -33.95 R6.2 

Pin1Y 2.85 P 2.35 3.25 R6.2 

Pin1Z 7.67 P 7.4 7.8 R6.2 

Pin2X -31.91 P -32.4 -31.45 R6.2 

Pin2Y 2.79 P 2.35 3.25 R6.2 

Pin2Z 7.64 P 7.4 7.8 R6.2 

Pin3X -34.55 P -34.9 -33.95 R6.2 

Pin3Y -2.88 P -3.25 -2.35 R6.2 

Pin3Z 7.59 P 7.4 7.8 R6.2 

Pin4X -31.96 P -32.4 -31.45 R6.2 

Pin4Y -2.82 P -3.25 -2.35 R6.2 

Pin4Z 7.62 P 7.4 7.8 R6.2 

Pin5X -28.88 P -29.3 -28.35 R6.2 

Pin5Y 4.5 P 3.98 4.88 R6.2 

Pin5Z 6.97 P 6.7 7.1 R6.2 

Pin6X -27.08 P -27.5 -26.55 R6.2 

Pin6Y 4.54 P 3.98 4.88 R6.2 

Pin6Z 6.96 P 6.7 7.1 R6.2 

Pin7X -25.22 P -25.7 -24.75 R6.2 

Pin7Y 4.63 P 3.98 4.88 R6.2 

Pin7Z 6.97 P 6.7 7.1 R6.2 

Pin8X 99 P -999 9999 R6.2 

Pin8Y 99 P -999 9999 R6.2 

Pin8Z 99 P -999 9999 R6.2 

Pin9X -21.58 P -22.1 -21.15 R6.2 

Pin9Y 4.55 P 3.98 4.88 R6.2 

Pin9Z 6.95 P 6.7 7.1 R6.2 

Pin10X -19.73 P -20.3 -19.35 R6.2 

Pin10Y 4.52 P 3.98 4.88 R6.2 

Pin10Z 6.95 P 6.7 7.1 R6.2 
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Appendix V – BRC Data 

This appendix contains the meta-information about the BRC dataset. 

Table 10: description of the BRC data parameters 

Parameter Description Value type Unit of Measure Frequency Data 
Source 

Real-
time, Past 
data or 
both 

Complete Y/N Whether a barmark 
is completed or not 
based on entry of 
barmark finish time  

Y/N Scan end time 
inputted from a 
production machine 
touchbox in the 
MES system 

Every new 
barmark scan 

Production 
data 

Both 

Loaded Y/N Whether a barmark 
is loaded based on 
loading scan time 

Y/N A timestamp when 
entered into the 
MES system for 
when a load has 
been scanned onto 
a trailer 

Every loaded 
barmark 

Production 
data 

Both 

Barmark in 
process 

Whether the 
barmark Is in process 
based on scan start 
information and 
ended when there is 
a finish scan 

Y/N Scan time for when 
a barmark has been 
started 

Every barmark Production 
data 

Both 

Customer 
jobsite No 

The number that the 
system uses to 
identify a specific 
contract using a 
contract year and 
specific identity 
number 

Numerical N/A Every new 
contract 

Planning 
data 

Both 

Customer 
sequence No 

The number used to 
schedule a set of 
barmarks to be 
produced for a 
jobsite 

Numerical N/A Every new 
order 

Planning 
data 

Both 

Delivery prep 
No (DP) 

The number to 
identify the delivery 
schedule that the 
sequence will be 
loaded on 

Numerical N/A Every delivery 
prep set-up 

Planning 
data 

Both 

Delivery area The area of the UK 
that the delivery 
shall go to 

Qualitative address (string) N/A Planning 
data 

Both 

Regional and 
district 
postcode 

The district postcode 
for the area of 
delivery (this would 
usually be full 
postcode but is 
anonymised) 

Numerical and 
alphabetical 

N/A N/A Planning 
data 

Both 

Tonnage 
breakdown for 
sequence 

The amount of 
tonnage for all 
diameters of bar on 
the sequence and a 
total tonnage for 
each then total for 
all 

Numerical  Tonnes N/A Planning 
data 

Both 
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Colour of 
barmark tag 

Colour of tag that 
the barmark will 
have 

Colour N/A N/a Planning 
data 

Both 

Comments Any comments for 
the delivery or 
specific packaging 
requirements 

Qualitative N/A N/A Planning 
data 

Both 

Delivery date The date that 
delivery is due 

Date date N/A Planning 
data 

Both 

Barmark- 
Jobsite 

The contract year 
and jobsite number 
for referencing 

Numerical N/a When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- Seq The sequence 
number reference 

Numerical N/a When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- No The number 
reference of the 
barmark 

Numerical N/A When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Grade of steel 

The grade of steel 
that the barmark is 
produced out of  

Numerical N/A When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark - 
Quantity 

The amount of bars 
required to be 
produced for the 
barmark 

Numerical # of When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Dimensions 

The dimensions of 
the bar that is to be 
produced to if it is a 
shape to be bent 

Numerical mm When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Cutlength 

The length of bar to 
be cut to produce 
the bar 

Numerical mm When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Diameter 

The diameter that 
the bars are to be 
produced out of 

Numerical mm When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Shape 

The BS8666 shape 
code reference for 
the bar to be 
produced 

Numerical code When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Fabrication 
weight 

The weight the total 
number of bars will 
come to 

Numerical KG When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Number of 
threads 

The number of 
threads a bar 
requires 

Numerical # of When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
Couplers 
required 

The couplers that are 
required for the bar 
if coupled 

Numerical Coupler code When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
number of 
bends 

The number of 
bends on the bars 

Numerical # of When entered 
onto MES 
System 

Barmark 
data 

Both 

Barmark- 
number of 
arcs 

? Numerical # of When entered 
onto MES 
System 

Barmark 
data 

Both 

Organisation 
of loads by 
sequence 

The transport sheet 
shall have jobsite 
and sequence 
reference built into a 
list of loads 

Numerical N/A 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 
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Number of 
drops 

The number of drops 
on a trailer depicted 
by the different 
jobsite numbers in a 
block 

Numerical # of 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Haulier The haulier the 
trailer will be going 
with dependant on 
the number of 
haulier contracts 
being used 

Qualitative 
reference 

N/A 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Trailer No The trailer that the 
load is being loaded 
on to  

Number N/A 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Vehicle 
tonnage 

The amount of 
tonnage of the 
sequences split by 
bar category with a 
total in red 

Number Tonnage 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Quantity The quantity of 
barmarks in a 
sequence 

Number # of 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Instructions 
for transport 

Required packaging 
of the sequence 

Qualitative N/A 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Delivery date The required date of 
delivery 

Date Date 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Delivery time The required time 
for delivery 

Time Time 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Transport Any specific 
requirements of the 
trailer or haulier its 
going on 

Qualitative/code N/A 3 times a day 
for delivery 
setup changes 

Transport 
data 

Not in 
real-time 
currently 

Production tag 
number 

The number of the 
production tag which 
is related to the 
specific barmark for 
scan purposes 

Number N/A Generated 
when a 
barmark is 
generated 

Production 
data 

both 

Machine code The machine ID code 
referencing the 
touchbox of that 
specific machine or 
group of machines 
for example Lenton 

ID Number Machine ID 
produced 
when reports 
are pulled up 

Production 
data 

both 

Shift The shift that the 
bars are produced 
on 

Qualitative N/A Produced 
when report is 
pulled 

Production 
data 

both 

Depot code The code of the 
depot on the 
systems 

Code N/A Produced 
when report is 
pulled 

Production 
data 

both 

Start scan time The start time of 
production as 
entered by a scan of 
the production tag 
(barmark) done by 
the operator 

Date and time Date and time Produced 
when report is 
pulled 

Production 
data 

both 
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End scan time The end of 
production for the 
production tag 
(barmark) which will 
be entered once 
another tag is 
scanned into the 
system 

Date and time Date and time Produced 
when report is 
pulled 

Production 
data 

both 

Machine 
capability-
Cutlength 

The Qualitative for 
the machine to 
produce certain bar 
lengths 

Numerical mm N/A Machine 
capability 
excel 

Not 
currently 
available 

Machine 
capability-Bar 
Quantities 

The amount of bars 
that can be put 
through a machine in 
a single cycle with 
bar diameter as the 
variable 

Numerical # of N/A Machine 
capability 
excel 

Not 
currently 
available 

Machine 
capability-
bending 
segments 

The amount of bends 
a machine can do in 
a single cycle 

Numerical # of N/A Machine 
capability 
excel 

Not 
currently 
available 

Machine 
capability-
Horizontal 
bending 

The Qualitative to do 
bending on the x-y 
axis and maximum 
dimensional 
measurement 

Numerical mm N/A Machine 
capability 
excel 

Not 
currently 
available 

Machine 
capability-
Vertical 
bending 

The Qualitative to do 
bending on the z axis 
in up or down 
direction 

Numerical and 
Y/N 

mm N/A Machine 
capability 
excel 

Not 
currently 
available 

Machine 
workflow 
assignment 

The workflow of the 
machines dependant 
on shape code, 
diameter and 
cutlength 

Qualitative  N/A N/A Machine 
capability 
excel 

Not 
currently 
available 

Produce out of 
bar/coil 

Produce the specific 
barmark out of bar 
or coil dependant on 
shape code, 
diameter and 
cutlength 

Qualitative Bar/coil/dependant N/A Machine 
capability 
excel 

Not 
currently 
available 

Bar stock The amount of bar 
stock available in the 
factory 

Numerical Tonnage (individual 
bar numbers can be 
worked out through 
equation) 

Availability 
updated every 
day 

Stock data Not real-
time 

Coil stock The amount of coil 
stock available in the 
factory 

Numerical Tonnage (individual 
coil numbers can be 
worked out through 
equation) 

Availability 
updated every 
day 

Stock data Not real-
time 

Machine 
downtime 

A measurement of 
the downtime for 
the machine 
according to the 
bolt-on system 

Time N/A Currently 
measured by 
MES when a 
operator scans 
code in 

Machine 
sensor 
system 

Not 
currently 
available 

Machine ID The machine ID of 
the bolt-on 

Numerical integer/string per batch Machine 
sensor 
system 

Not 
currently 
available 
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Batch code The barmark, 
sequence and jobsite 
as taken from MES 
system, matched by 
timestamping 

Numerical String When pulled 
from MES 
system and 
what is 
currently on 
machine at the 
time matched 
with 
timestamp 

Machine 
sensor 
system 

Not 
currently 
available 

Cycle Start 
time 

The cycle times of 
each of the bars 

Timestamp Time Every bar 
produced 

Machine 
sensor 
system 

Not 
currently 
available 

Mains 
frequency 

Real number for the 
frequency of 
electrical input 

Numerical Hz Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Mains voltages The voltage of the 
power supply going 
into the machine 

Numerical Voltage Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Mains current The current of the 
power supply going 
into the machine 

Numerical Amps Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Hydraulic 
Temp 

The hydraulic 
temperature 
measurement 

Numerical °c Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Hydraulic 
pressure 

The hydraulic 
pressure 
measurement of the 
system 

Numerical Pa Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Step time The time taken 
between each of the 
steps in a cycle for 
example feed,cut, 
feed,bend, feed, 
bend, feed and cut  

Time ms Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Step power The amount of 
power input for each 
step taken 

Numerical kW Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Step Feed 
length  

The amount of bar 
fed in for each step 

Numerical mm Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Step angle 
bent 

The angle 
measurement bent 
in a step 

Numerical Rad/degrees Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Machine 
highlight issue 

Issue detected if for 
example a oil leek 
occurs and hydraulic 
pressure drops 
severely 

Y/N N/A Issue 
highlighted by 
system 

Machine 
sensor 
system 

Not 
currently 
available 

Roller wear The measurement of 
the wear on machine 
infeed and 
straightening rollers 

Numerical mm Every step in 
cycle 

Machine 
sensor 
system 

Not 
currently 
available 

Crane position The positional 
position of a crane in 
relation to x-y co-
ordinates 

Co-ordinate mm Every RFID tag 
passed or 
equating 
system 

Crane 
sensor 
system 

Not 
currently 
available 

Crane load 
identification 

The identification of 
a load the crane has 
moved based on 
production tag data 

Number N/A Every scan on 
barmark 
placement 

Scan data Both 
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PPM Plan The planned 
preventative 
maintenance plan 
that is manually 
input to show what 
and when work is 
performed on a 
machine  

Qualitative/ date N/A Input form 
engineering 
department 

Machine 
PPM 
schedule 

Not real-
time 
currently 

Workstation 
events 

Machine stoppage 
codes that are 
entered into the MES 
system in order to 
identify a 
workstation 
(machine) event 

Code N/A Whenever a 
stoppage 
happens 

Production 
data 

Both 

Workstation 
event times 

The timing of the 
workstation events 

Time N/A When a 
stoppage is 
scanned in 
time will be 
entered into 
MES system 

Production 
data 

Both 

 


