

Deliverable D6.3

Integration guidelines (Interim Version)

Version
1.1

Lead Partner
MAG

Date
12/10/2021

Project Name
FACTLOG – Energy-aware Factory Analytics for Process Industries

Ref. Ares(2023)7028716 - 16/10/2023

2

Call Identifier
H2020-NMBP-SPIRE-2019

Topic
DT-SPIRE-06-2019 - Digital technologies for improved
performance in cognitive production plants

Project Reference
869951

Start date
November 1st, 2019

Type of Action
IA – Innovation Action

Duration
42 Months

Dissemination Level

X PU Public

 CO Confidential, restricted under conditions set out in the Grant Agreement

 Cl Classified, information as referred in the Commission Decision 2001/844/EC

Disclaimer

This document reflects the opinion of the authors only.

While the information contained herein is believed to be accurate, neither the FACTLOG consortium as a whole, nor any
of its members, their officers, employees or agents make no warranty that this material is capable of use, or that use of
the information is free from risk and accept no liability for loss or damage suffered by any person in respect of any
inaccuracy or omission.

This document contains information, which is the copyright of FACTLOG consortium, and may not be copied,
reproduced, stored in a retrieval system or transmitted, in any form or by any means, in whole or in part, without written
permission. The commercial use of any information contained in this document may require a license from the proprietor
of that information. The document must be referenced if used in a publication.

D6.3 Integration guidelines (Interim Version) v1.1

3

Executive Summary

FACTLOG is implemented as a sophisticated modular system, which comprises various
data and functional components that interact with each other to provide the desired
cognitive functionalities. Its goal is to realise the Enhanced Cognitive Twin (ECT) concept,
which can be seen as the evolution of the digital twin in the big data era. As such it
provides cognitive capabilities to the digital twin, enabling learning from the vast streams of
data that flow through it and thus the continuous modelling of the physical element’s
behaviour. In other words, an ECT consists of all the characteristics of a digital twin, with
the addition of artificial intelligence features enabling it to optimize operation as well as
continuously test what-if-scenarios, paving the way for predictive maintenance and an
overall more flexible and efficient production using stored operation data in the digital twin
throughout its lifecycle. The modularity of the system, as well as the broad scope of the
manufacturing domain which the FACLOG platform aims to support, requires following a
thoughtful integration plan along with per module guidelines, in order to ensure that every
component fulfils its role, seamlessly.

The document explores the integration challenges that have been faced in the context of
preparing the interim version of the FACTLOG platform in a per component manner, and
presents in the form of guidelines the workflow and the configurations that need to be
performed on each module in order to initialize a FACTLOG installation.

D6.3 Integration guidelines (Interim Version) v1.1

4

Revision History

Revision Date Description Organisation

0.1 08/03/2021 ToC MAG

0.2 22/03/2021
Added input on knowledge graph
modelling

EPFL

0.3 23/03/2021 Added input on data model MAG

0.4 24/03/2021
Added input on analytics
configuration

JSI, QLECTOR

0.5 25/03/2021
Added input on digital twins, process
modelling

MAG, TUC

0.6 26/03/2021 Added input on optimization AUEB, UNIPI

0.7 27/03/2021 Final draft for internal review MAG

0.8 30/03/2021 Peer review AUEB, SIMAVI

1.0 31/03/2021 Final version ready for submission MAG

1.1 11/10/2023
Added configuration guidelines of the
data ingestion layer for MQTT and
OPC UA protocols

MAG

D6.3 Integration guidelines (Interim Version) v1.1

5

Contributors

Organisation Author E-Mail

MAG Kostas Kalaboukas kostas.kalaboukas@maggioli.gr

MAG Mariza Koukovini mariza.koukovini@maggioli.gr

MAG Aziz Mousas azis.mousas@maggioli.gr

MAG Nikos Dellas nikolaos.dellas@maggioli.gr

MAG Eugenia Papagiannakopoulou eugenia.papagiannakopoulou@maggioli.gr

MAG Georgios Lioudakis georgios.lioudakis@maggioli.gr

EPFL Jinzhi Lu jinzhi.lu@epfl.ch

JSI Aljaž Košmerlj aljaz.kosmerlj@ijs.si

QLECTOR Klemen Kenda klemen.kenda@qlector.com

QLECTOR Jože Rožanec joze.rozanec@qlector.com

TUC Georgios Arampatzis garampatzis@pem.tuc.gr

TUC George Tsinarakis tsinar@gmail.com

TUC Nikolaos Sarantinoudis nsarantinoudis@isc.tuc.gr

AUEB Yiannis Mourtos mourtos@aueb.gr

AUEB Georgios Zois georzois@aueb.gr

AUEB Stavros Lounis slounis@aueb.gr

AUEB Eleni Zampou zampoueleni@aueb.gr

AUEB Gregory Kasapidis gkasapidis@aueb.gr

AUEB Panagiotis Repoussis prepousi@aueb.gr

UNIPI Pavlos Eirinakis pavlose@unipi.gr

UNIPI Konstantinos Kaparis k.kaparis@uom.edu.gr

UNIPI Penny Kalpodimou pennykalp@unipi.gr

mailto:kostas.kalaboukas@maggioli.gr
mailto:mariza.koukovini@maggioli.gr
mailto:az.mousas@maggioli.gr
mailto:nikolaos.dellas@maggioli.gr
mailto:eugenia.papagiannakopoulou@maggioli.gr
mailto:georgios.lioudakis@maggioli.gr
mailto:jinzhi.lu@epfl.ch
mailto:aljaz.kosmerlj@ijs.si
mailto:klemen.kenda@qlector.com
mailto:joze.rozanec@qlector.com
mailto:garampatzis@pem.tuc.gr
mailto:tsinar@gmail.com
mailto:nsarantinoudis@isc.tuc.gr
mailto:mourtos@aueb.gr
mailto:georzois@aueb.gr
mailto:slounis@aueb.gr
mailto:zampoueleni@aueb.gr
mailto:gkasapidis@aueb.gr
mailto:prepousi@aueb.gr
mailto:pavlose@unipi.gr
mailto:k.kaparis@uom.edu.gr
mailto:pennykalp@unipi.gr

D6.3 Integration guidelines (Interim Version) v1.1

6

Table of Contents

Executive Summary ... 3

Revision History .. 4

1 Introduction ... 8

1.1 Purpose and Scope ... 8

1.2 Relation with other Deliverables .. 8

1.3 Structure of the Document ... 8

2 FACTLOG Data Model .. 9

2.1 Conceptual Model .. 9

2.1.1 Manufacturing environment .. 10

2.1.2 FACTLOG domain .. 13

2.2 Logical model – FACTLOG knowledge graphs.. 16

2.2.1 Principles .. 17

2.2.2 Methodology ... 17

3 Digital Twins ... 20

4 Data Ingestion and Management ... 23

4.1 Guidelines for MQTT/AMQP-based connectivity ... 24

4.2 Guidelines for OPC UA-based connectivity ... 26

5 Process Modelling .. 30

6 Analytics Modules .. 33

7 Optimization Toolkit ... 36

Annex I .. 39

References ... 41

D6.3 Integration guidelines (Interim Version) v1.1

7

List of Figures

Figure 1: Methodology to build FACTLOG ontology .. 18

Figure 2: Class hierarchy of main concepts ... 19
Figure 3: Class diagram of Ditto's most basic entities in API version 2. 20
Figure 4: Example Apache NiFi configuration for MQTT-based connectivity 26
Figure 5: Two-way secure communication of Apache NiFi to Apache MiNiFi 27
Figure 6: Example Apache MiNiFi configuration for OPC UA-based connectivity 29

Figure 7: Life Cycle of the Process Modelling Module ... 32
Figure 8: Structure of the three stages of the typical machine learning workflow and the
relationships among them. ... 33
Figure 9: Optimization Toolkit internal architecture .. 37

List of Tables

Table 1 – Information attributes for describing MEs as per [6] .. 15

Table 2 – Description of the API functions ... 31
Table 3 – FACTLOG ontology classes under IoF and BFO framework 39

D6.3 Integration guidelines (Interim Version) v1.1

8

1 Introduction

1.1 Purpose and Scope

This document reports on the work done by the FACTLOG consortium in the scope of task
T6.2 “FACTLOG integration and packaging” and T6.3 “FACTLOG integration with external
platforms and systems front end” regarding integration guidelines to the FACTLOG
platform and components. It follows the work conducted in WP1 on user requirements
analysis and system architecture and is also tightly related with WP2-WP5, where the
implementation of the core modules of the system is currently taking place, as well as with
WP7, which will realise the actual instantiation and validation of the FACTLOG system in
the industrial pilot cases.

In the following chapters, a set of integration guidelines for each FACTLOG module is
presented. Each chapter explores the integration requirements and the challenges faced in
the current interim version of the FACTLOG platform. Additionally, each chapter presents
the flow of work and the configurations that need to be performed on each module in the
form of guidelines in order to initialize a FACTLOG installation.

The current document reflects the interim version of the FACTLOG integration guidelines.
The final version will be ready by M34 of the project.

1.2 Relation with other Deliverables

Deliverable D6.3, presents the integration guidelines that were identified during the first
integration iteration of FACTLOG. It follows the modular system architecture as presented
in the deliverable D1.3 “FACTLOG system architecture and technical specifications” and
produces integration guidelines taking into account the requirements presented in D1.1
“Reference Scenarios, KPIs and Datasets”, as well as the technological progress of
individual modules. In this context, this document primarily focuses on the way the
different modules are integrated to the platform, while staying as pilot-neutral as possible.
In this sense, it is closely linked also to deliverable D7.1 “FACTLOG Installation and Initial
Testing (Interim Version)”, which will follow shortly after, documenting the specificities of
applying the integration guidelines reflected herein in each pilot.

1.3 Structure of the Document

This document is organized in 7 chapters. The first one introduces the content to be
presented next. Chapter 2 explores the integration challenges that have been faced in the
context of the FACTLOG data model and specifies guidelines for the integration to the
Knowledge Graph module. Chapter 3 provides guidelines for implementing the digital twins
concept in the FACTLOG platform. Chapter 4 describes the challenges posed on ingesting
data from external data sources and provides guidelines for integrating them to the
FACTLOG platform. Chapter 5 provides a high-level overview of the process modelling
workflow and presents the API of the module. Chapter 6 provides guidelines on the
configuration of the analytics module. Chapter 7 presents the workflow that needs to be
followed for the integration of the optimization toolkit. Annex I, finally, provides the
integration of FACTLOG ontology concepts with existing ontologies.

D6.3 Integration guidelines (Interim Version) v1.1

9

2 FACTLOG Data Model

In each new FACTLOG deployment, data from different production environments will need
to be exploited to foster the dynamic cognitive aspects designed in the scope of the
project. Not only the provenance of data, but also the use cases to be supported by this
data exhibit great variety in their nature and cover a broad range of manufacturing areas
and production management requirements. It is therefore not realistic for FACTLOG to
claim the design of a broad homogenized data model, which can serve all purposes
required. Instead, its aim in this regard is to provide the conceptual foundations and tools
necessary to ease the implementation of the applicable data model on occasion,
considering the particular manufacturing environment, while at the same time ensuring the
delimitation of the design to each particular context.

In brief, the methodology for designing a data model for FACTLOG should entail the
following:

• In depth analysis of the relevant use cases, in seeking the precise requirements on
the involved data sources

• Thorough examination of available data sources, for discovering both existing
information, as hosted by the respective data providers, as well as missing
information, in the sense of specific data requirements of the applicable FALTOG
solutions that are not satisfied by the production environment as-is

• FACTLOG data model design

The FACTLOG data model will be formalized through knowledge graphs, the design of
which should follow a top-down approach. The first step is the identification of the basic
concepts both in the physical and the digital context. After the conceptual analysis of the
model, the logical design follows resulting in the design of the FACTLOG ontology, as
explained in section 2.2.

As a final step, based on general data requirements the physical design has to be defined.
This procedure and options and design decisions, particularly for the case specific details,
are dependent on each particular deployment and will not be examined in the current
document; however, some insights can be found in Section 3 as well as in D6.1 “Data
Collection Framework”.

2.1 Conceptual Model

Although, as mentioned above, no common data model can be specified that would be
applicable in all FACTLOG instantiations, this section presents an overview of some
recurrent concepts in the context of the solutions developed for the project pilots. Since
any future solutions will be based on the same technologies and cognitive approaches, it is
expected that (most of) these concepts will reappear, albeit adjusted to each different
manufacturing setting.

D6.3 Integration guidelines (Interim Version) v1.1

10

2.1.1 Manufacturing environment

2.1.1.1 Infrastructure resources

The factory/plant as a whole: This concerns the facility of reference hosting the overall
production environment of relevance to FACTLOG. All processes take place within it and
are therefore affected by any conditions that apply to it. These may include properties like
its location, building layout, its operation schedule (e.g., working days per week, working
shifts, vacations, etc.), current situation of the facility (e.g., normal/abnormal), or any
incidents that may occur. The factory/plant can of course be further subdivided in
departments hosting different operations, as could be, for instance, warehouses, different
production lines, or the weaving versus the finishing department in a woollen fabrics plant;
these departments may be characterized by different properties and conditions in terms of
the same parameters, e.g., ISO classification, energy consumption, etc., but also be
affected by different factors entirely or be the stage of various events (e.g., a manufactured
product is placed at a different location than it should have been at 10 AM).

Manufacturing equipment: The actual production is performed by machines and, in
general, various technical equipment. Machines may be characterized by certain types
and functionality (e.g., bending, drilling, press fit, screwing, a distillation unit or tank, a
loom etc.), certain constraints (e.g., cycle times per product type) and
preferences/settings. They may follow a schedule, referring either to normal operation
while carrying out manufacturing activities (Monday to Friday first shift), or regular
maintenance activities. A piece of equipment may also belong to a department or stage in
production line or reside in a specific room or building. Finally, the current state of the
equipment is of importance in most cases, including dynamically varying indications like
on/off, working/breakdown and overall availability, energy usage (unit: kWh), temperature
(unit: °C, °F), noise level (unit: dB), motor speeds, valve open/closed status, input flow rate
of materials, ready to unload, performance, location (e.g., in case of a crane or trailer),
deviations from normal operation etc., various events (e.g., machine stoppage
codes/downtimes) and associated timing, causes, etc.

Products: The output of a production process, either intended or in the form of by-
products, drives or affects the process but is also often the subject of monitoring itself.
Products can have discriminating identification numbers, types and other features, such as
colour or dimensions. There might be a desired time of output, e.g., in the form of a
deadline or adherence to overall production schedule in the case of intermediate products.
Where the product is currently located might also be of interest, e.g., in a storage space or
the laydown area. Finally, there could be properties referring to the current situation of the
product, in-process, installed, completed, shipped, in inventory, etc., or to its quality, for
instance, denoting whether it has passed or failed particular quality tests, and associated
metrics.

Materials: One of the most typical production constraints has to do with availability of raw
material, referring to both basic and intermediate goods used as input to produce finished
goods. But also scrap material may be considered in this context, i.e., recyclable materials
left over from product manufacturing and consumption, such as parts of vehicles, building
supplies, and surplus materials, that can be of use further down the production chain.
Material information may include identification (e.g., bar codes, RFID tags) and various
other characteristics, such as, type (e.g., bars, coils), “handle with care”/fragile, toxic/non-
toxic, liquid/solid/gas, plastic/steel/rubber/powder, etc. Time information of interest here
may concern purchase schedule, receiving / internal routing schedule or machine load

D6.3 Integration guidelines (Interim Version) v1.1

11

schedule. Further, efficient monitoring and production organization requires being able to
track down available material (e.g., Shelf #3 in Warehouse #2) and being in sync with its
current situation, including precise availability, tested status, physical condition in terms of
temperature, liquid/solid/gas state, etc.

Sensing equipment: Modern plants are equipped with a large number of sensors
monitoring their operation in real time. As such they constitute another source of
information input to the system. They are related to the resource they are attached to, and,
thus, by transitivity they can provide information for the base resource as well as other
resources contained or otherwise related to the base one. Sensors may be of different
types and provide a variety of measurements covering properties like energy consumption,
temperature, pressure, flow rate, levels of certain ingredients, machine downtime,
equipment wear, moving equipment position etc. Values provided by sensors can serve for
real-time monitoring or be stored as historical data for future reference, so as to provide
useful insights along the production line.

IT systems: A variety of IT systems are in place in a factory, constituting useful data
sources for purposes similar to the ones served by FACTLOG. This typically refers to
Manufacturing Execution Systems (MESs) and Enterprise Resource Planning (ERP)
systems, which provide a variety of information including production data, planning data,
orders, stock data, information on transport of products and materials, scan data,
scheduling, and other business data. Further, data management and collection systems
are used that store the data from the sensors forming historical databases.

The human factor: The staff also plays a critical part in any production process, since it
can be expected that certain tasks therein are performed by humans or at least require
some form of human intervention. Staff members may be of varying skill level (e.g.,
master, journeyman, apprentice, etc.) or other classification (e.g., researcher,
administrator, technician, driver, etc.). Their personal working schedule is of relevance to
overall production management, as are potentially their current working position (e.g.,
Operator #1: WorkUnit #3 and 50 cm away from Robot #2) and current or past status (e.g.,
now on break, number of hours worked each day, etc.). Collaborations among personnel
as well as assignments to processes, equipment, facilities, etc. also affect production.

2.1.1.2 Abstract concepts

Further extending the FACTLOG data model conceptually, we define a set of abstract
concepts, which are related to the previously described physical entities.

Operation: An operation is every activity that actually takes place within a factory
changing the state of materials and/or products and is related to a particular production
purpose. Operations may be performed by equipment or humans. Each is associated with
one or more inputs, materials or intermediate products, and produces outputs, that may or
may not participate in or constitute the final product(s) of the related production process.

Process: Manufacturing processes are combinations of manufacturing operations towards
the final production outcome. They can be classified by nature (e.g.,
production/maintenance/quality test/inventory) and type (e.g., weaving/finishing,
distillation, pre-assembly/final assembly, etc.). A process may have some time related
attributes, for instance it can take place periodically, at one specific time, ad-hoc, have a
certain duration etc. Further, it would most probably include certain equipment and be

D6.3 Integration guidelines (Interim Version) v1.1

12

carried out in a specific location within the plant. It additionally may be characterised by
some operational settings and a distinct state in each point in time (e.g., planned, started,
finished, incomplete). For certain cases it may be required to have a detailed description of
all processing stages of the process, as well as the stations included per stage;
interconnection information between stages and/or stations (e.g., travelling times from
stage to stage, capacity of areas to store work in progress, etc); the detailed flow
processing from start to the end of the line for each product.

Order: Production orders are a core concept that literally guides in practice production
scheduling and overall management. The minimum set of information required for
describing a particular order includes its identifier, the expected product in sufficient detail
and quantity, and the due date. Other parameters could include priority, remaining
quantity, its status in production (e.g., in-process/completed/shipped/in inventory), its stage
or current assignment to a particular line or machine, even accompanied with location
information (e.g., if assembled and waiting in a warehouse). An order may on occasion be
divided in suborders, meaning parts of the total order constituting groups of homogenous
products that are produced together (can be referred to as jobs); only when all these
groups have been produced can the order be considered complete and ready to ship.

Schedule: It refers to the way that production-related activities are organised. It may
concern both operation and maintenance activities. In either case it can be defined at
various levels, i.e., a complex process, individual production lines or individual machines.

Maintenance activity: It may refer to predictive, preventive or corrective/reactive
maintenance. For scheduled maintenance activities, relevant information includes intended
start and end time and duration; essentially this constitutes a maintenance plan that is
manually input to show what and when work is performed on a machine. In the case of
unscheduled maintenance activities, information could include the start and the end of a
time window estimated for the activity as well as the estimated duration; the need for
unscheduled maintenance should be identified by performance degradation. Maintenance
costs are typically also taken into consideration.

Setup time: It is the time interval needed to adjust the settings on a machine, so that it is
ready to start processing an upcoming job. In general, we may consider 3 cases: a) setup
time depends solely on the machine, b) setup time depends on the machine and upcoming
job, and c) setup time depends on the machine and the sequence of jobs, i.e., the setup
time of job i when processed in machine m depends on which job precedes it; in this last
case we would thus need to know the setup times for all the unique pairs of jobs per
machine. Setup times could be defined, apart from machine level, also at production line
level.

Processing time: It is the time required by an eligible machine for the processing of a job
or product (i.e., cycle time per machine per product). Depending on context, it could also
involve loading/unloading delays, or take the form of transport times from one location to
another in the case of moving equipment.

Production context: This refers to any current surrounding conditions that may affect
production, including, for instance, timing (day of week), conditions or requirements of the
physical environment (e.g., temperature, humidity, illuminance), financial and business
environment (e.g., product demand, material and energy costs), and others. Such

D6.3 Integration guidelines (Interim Version) v1.1

13

information is typically derived through a combination of time and specific sensors or other
appropriate data sources (e.g., a weather web service). Each context may apply either to
the entire plant/production or to individual sub-facilities or processes.

Reports: During production, activity of interest is typically recorded for future reference.
This may refer, for instance, to reports detailing the symptoms and the causes of some
malfunction from workers at the shop floor. Other instances may include personnel activity
reports; activity reports of the equipment engaged in manufacturing, maintenance, etc.
(e.g., May 14th, 2019 9 AM to 6 PM: Regular Maintenance); usage report of the material
(e.g., May 14th, 2019: 8kg of Material #2 was used in WorkUnit #2); report on the status,
usage, etc. of the facility (e.g., the window in clean room #2 was found to be broken at 10
AM); reports on general conditions affecting manufacturing (e.g., the temperature in jig
bore room #3 changed from 20°C to 22 °C during manufacturing process.); report of
activities related to the product (e.g., May 14th, 2019 9 AM: Product #2 has passed
QualityTest #5.).

2.1.2 FACTLOG domain

2.1.2.1 Cognitive aspects

Apart from the above aspects, that can be considered to more or less characterize all
manufacturing environments in their typical form, FACTLOG is centred around certain
additional concepts, referring both to the outputs of the particular cognitive functionalities it
offers, as well as to enablers of these functionalities.

Process model: A process model offers a representation of both the static structure of a
system and its dynamic behaviour, as well as the flow of materials and information through
it. In other words, it describes the entities (components) composing it and their
interactions, using different levels of detail according to the specific needs. Process
modelling as a methodology may be applied to both continuous and discrete systems, on
the basis of the formalisms appropriate for each.

Process model instance: This can be seen as an instantiation of a process model at a
concrete level, on the basis of specific parameter values. Its lifecycle progresses in
complete isolation from the process model and the physical system, i.e., without affecting
them, with the purpose of serving applications requiring as input the physical system’s
state at a specific point in time.

Optimal/proposed production schedule: It is calculated by a dedicated optimization
module on the basis of relevant production characteristics (e.g., equipment features,
settings, orders, maintenance schedules) with the ability to exploit both live and historical
data, but also estimations, predictions or other calculations (i.e., from analytics or
simulation), as well as additional input as required (e.g., optimization options). The new
schedule for production may include information such as proposed settings for all
production units, the assignment of jobs to machines or production lines and their
sequence, also taking under consideration produced scheduling of maintenance activities,
etc. This optimal plan can then be forwarded for visualisation or simulation; the latter
serves, for instance, to validate the feasibility of the optimal schedule produced from
optimization, but also to compare alternative scenarios with respect to specific objective
functions generated by the optimization module on demand. Notably, in the course of
execution of the proposed schedule, a triggering factor may instantiate the need for re-
optimization, indicative triggers including: (a) new planning horizon, (b) cases of

D6.3 Integration guidelines (Interim Version) v1.1

14

infeasibility (e.g., machine breakdown, change of order due date), (c) the arrival of new
order(s), (d) scheduled timeframe to conduct an optimization, (e) new flag for a machine
that indicated the need to conduct optimization, etc.

Analytics model: It represents the usual/expected behavior of the system. Models in this
category include primarily data-driven models generated through either batch or stream
learning, but also complex event processing (CEP) patterns and statistical models.

Variation: Variations constitute deviations from normal operation, i.e., unsusualities and
outliers, that are detected by data analytics by observing data and validating them against
known behavioural models. They may refer to both past data and live data, and at any
level (e.g., machine, process). Variations are not necessarily anomalies, though they may
indicate a trend towards an anomalous state, and may require adapting the manufacturing
process to avoid causing serious disruption to ongoing activities.

Anomaly: Anomalies are significant variations which have the potential to disrupt the
manufacturing process. They can be detected with machine learning models or statistical
algorithms, which learn about normal operations and identify events that deviate from
values observed in the past. Another way to view anomalies is with respect to cases where
the value obtained is also anomalous by certain criteria when compared to predictions
issued for that point in time.

Root-cause: Expert knowledge and analytics methods combined can be applied to
identify most likely causes and contributing factors that lead to detected variations and
anomalies. Root-cause analysis can help understand in which context
variations/anomalies take place, how they relate to the rest of the manufacturing process
and if an anomalous event is related to other anomalous of the same type or other related
anomalous events through the production process, eventually providing useful insights and
recommendations for interventions and overall production management.

Prediction: Apart from variations and anomalies, analytics models are typically used to
predict possible outcomes, based on patterns learned from past data. Predicted values
can be categorical (e.g., “the machine will break down”) or numerical (e.g., “we expect the
machine to break down in half a day”). Predictions may be related to anomalies in various
ways, other than being one themselves; for instance, if the anomalies persist and affect a
meaningful time window for some prediction model, this can affect prediction outcomes.
Conversely, having a prediction computed in advance, we can compare it to the actual
plant readings and raise an alert when they deviate significantly from the predicted values.

2.1.2.2 Manufacturing entities as enhanced cognitive twins

In FACTLOG the representation of concepts like the ones presented above, i.e., referring
to the production infrastructure and any data of interest associated with it, is based on the
digital twin paradigm. In this direction, the project will build upon the specifications of
ISO/DIS 23247-3 [6], which address the particularities of the manufacturing domain. Table
1 summarises at a high level a minimum set of possible information types that the
standard foresees for the corresponding digital twins.

D6.3 Integration guidelines (Interim Version) v1.1

15

Table 1 – Information attributes for describing MEs as per [6]

Information
element

Description

Identifier Value used to uniquely identify an observable
manufacturing element

Characteristics A typical or noticeable feature of an observable
manufacturing element. They mainly refer to
static information that does not change during
manufacturing1.

Schedule Time information bound to a manufacturing
process

Status Situation of an observable manufacturing
element involved in a manufacturing process;
typically it may change during the process2.

Location Geographical or relative location information of
an observable manufacturing element

Report Description of activity done by or onto an
observable manufacturing element

Relationship A connection information between two or more
observable manufacturing elements

However, in order to also accommodate the cognitive aspects presented earlier at the
digital twin level, FACTLOG extends the above by defining three additional types of digital
twin properties, namely, analytics, simulation and optimisation.

The exact content and the specificities of all above information elements will depend on
the types of MEs to be addressed on occasion and will be aligned with the descriptions
provided for each entity by the KG in place. In this regard, and on the basis of the analysis
of FACTLOG use cases, the project also adopts the high-level categorisation of digital
twins to be modelled proposed by ISO/DIS 23247, which is as follows:

• Personnel: Includes employees who are engaged directly or indirectly in
manufacturing processes.

• Equipment: Any physical element that carries out an operation directly or indirectly
for a manufacturing process, e.g., a machine, tank or trailer.

1 For Ditto, they may be attributes or desired properties.
2 To be mapped to Ditto Features.

D6.3 Integration guidelines (Interim Version) v1.1

16

• Material: Physical matter that becomes a part or the whole of a product e.g., bars,
coils, feedstock, scrap, etc., or is used to aid manufacturing processes, e.g.,
cleaning fluid, coolant, etc.

• Process: An observable physical operation within manufacturing, e.g., the LPG
distillation process.

• Facility: This includes infrastructure that is related to or affects manufacturing, e.g.,
a warehouse, a product laydown area.

• Environment: It includes necessary conditions that shall be supplied by facilities for
the correct execution of a manufacturing process, e.g., air temperature.

• Product: A desired output or by-product of manufacturing process, or a group
thereof (e.g., an order).

• Supporting document: Any form of artefact that helps the applications of Digital
Twin for manufacturing.

Interestingly, entities of the above types may form various relations while participating in
manufacturing processes (e.g., electronic equipment constituting a machine, machines
participating in the same process, processes that if combined lead to a specific product),
while the final production outcomes are affected in the context of these relations. In this
sense, the inclusions of such relations as part of the digital twin representation, as also
foreseen by the standard, is crucially useful to FACTLOG, as they will be consistently
taken into account in cognitive functions and associated orchestrations of the necessary
data exchanges.

The technology of choice for implementing digital twins has been to use Eclipse Ditto, by
appropriately mapping above information to the corresponding attributes and features, as
explained in Section 3.

2.2 Logical model – FACTLOG knowledge graphs

A Knowledge Graph is a set of data points linked by relations that describe a domain, for
instance a business, an organization, or a field of study. Knowledge Graphs are secondary
or derivate datasets: they are obtained by analysing and filtering the original data.
Knowledge Graphs are also sometimes called semantic networks. Semantic emphasizes
the fact that the meaning is encoded together with the corresponding data. This is done
through the taxonomies and ontologies. Knowledge graphs are widely used for
representing interrelationships of entities. The definitions for entities specify their features.
When developing a knowledge graph, an ontology is important in that it provides the
specific definitions to the entities in knowledge graph.

Ontology engineering is the general term of methodologies and practices for building
ontologies. Ontology engineering refers to the set of activities that concern the ontology
development and the ontology lifecycle, the methods and methodologies for building
ontologies and the tool suites and languages that support them. The results of ontology
engineering provide domain knowledge representation to be reused efficiently and prevent
waste of time and money which are usually caused by non-shared knowledge. It helps
Information Technology (IT) to operate with interoperability and standardization.

This section presents the foundations on which the FACTLOG Ontology will be built, upon
any deployment in a new environment. The FACTLOG ontology deals with the design and
implementation of the semantic model and the mechanisms for data integration. It provides

D6.3 Integration guidelines (Interim Version) v1.1

17

a unified and all-spanning semantic model covering the multi-domain knowledge of all the
FACTLOG use cases. Therefore, the FACTLOG project will achieve semantic enrichment
through pilot domain knowledge which deals with cross-sectoral knowledge exploration
and filtering. Thus, it requires semantic interoperability, that is the ability of information
systems to exchange data unambiguously with shared meaning as a standard.

The main objectives of FACTLOG ontology are:

• to identify the domain of interest, covering all relevant products, data sources,
workflow resources, design and manufacturing processes, user-interface access
points and dynamics of the entire system in FACTLOG pilots

• to design and implement the knowledge graph models

• to provide a linked data integration framework that will extract, export, and
harmonize data from various sources

• to enable semantic enrichment (e.g. annotations, tagging) of data originating from
disparate research or existing systems

• to construct enhanced cognitive twins using knowledge graph models and support
process modelling, optimization and decision-making.

2.2.1 Principles
Entities in the ontological approach proposed by FACTLOG have been arranged based on
the Basic Formal Ontology (BFO)3, which is a formal ontology framework developed by
Barry Smith and his associates. In BFO, there are two varieties: continuants,
comprehending continuant entities such as three-dimensional enduring objects, and
occurrent, comprehending processes conceived as extended through (or as spanning)
time. To adopt the BFO, the framework will provide availability to merge the FACTLOG
domain ontology structured by BFO.

Originated from BFO, ontology design principles of FACTLOG are as follows:

• use single nouns (except data) and avoid acronyms

• ensure univocity of terms and relational expressions

• distinguish the general from particular

• provide all non-root terms with definitions

• use essential features in defining terms and avoid circularity

• start with the most general terms in the domain

• use simpler terms than the term you are defining (to ensure intelligibility)

• do not create terms for universals through logical combination

• structure ontology around is_a hierarchy and ensure is_a completeness

• single inheritance

2.2.2 Methodology

In order to design the taxonomies for supporting data integration in FACTLOG, one of the
well-known development methodologies, i.e., through domain knowledge, has been applied to
(i) define the application domain boundaries and (ii) capture elements definition. For
generally applicable solutions, generalization of the FACTLOG pilots is serving as a

3 https://basic-formal-ontology.org/

https://basic-formal-ontology.org/

D6.3 Integration guidelines (Interim Version) v1.1

18

common reference model for not only all the specific pilots, but also further cognitive
scenarios which will be the application of the Factlog platform. By composing a top-level
overview, abstract concepts facilitate to perform domain specific formalisms and cognitive
operations.

As a general roadmap, after the extraction of entities from Competency Questions, the list
of classes will be updated in a comparison with existing ontologies, such as BFO ontology,
IOF-SE ontology, and IOF ontology4. And then, all the entities will be rearranged in the
BFO structure. Finally, SQWRL and SPARQL will be used to support reasoning and query
of the OWL models.

Domain knowledge
IOF

Ontology
IOF-SE

Ontology
BFO

Ontology

Reference ontology

Define all the entities in the scope

Alignment to Basic Formal Ontology

SQWRL Reasoning SPARQL Query

Factlog ontology

Figure 1: Methodology to build FACTLOG ontology

Figure 2 depicts the class hierarchy of the ontology concepts supporting core FACTLOG
operations, as specified through the analysis and instantiation of the project pilots. As
shown, based on the BFO and IoF ontology, domain concepts are defined in order to
support FACTLOG pilot descriptions and cognitive operations. These domain concepts
include, on the one hand, ontology concepts for pilot description, i.e.:

• Process, i.e., operational scenario: aiming to describe the operational process for
each pilot.

• Material entity, i.e., machines used in the process: aiming to describe the things
participating in the operational process.

4 https://www.industrialontologies.org/

https://www.industrialontologies.org/

D6.3 Integration guidelines (Interim Version) v1.1

19

Faclog pilot entities

Continuent
Occurrent

Process

Generally dependent continuant Independent continuant Specifically dependent continuant

Immaterial entity Material entity Quality Realizable entity

ObjectSite

Information Content Entity

Object aggregate

Domain

BFO and IoF is_a

is_aClass Hierarchy
of Main Concepts

Disposition

Function
Temporal Region

Thing

Anomaly

Pilot is_a

directive_information_entityoptimization pilot_parameterProcess_model simulation_model

Artifact Person artifact_aggregate organizationServiceProcess boundary
...

Figure 2: Class hierarchy of main concepts

On the other hand, ontology concepts addressing cognitive operations are also
incorporated:

• Anomaly: ontology definitions for anomaly analysis.

• Directive information entity: ontology definitions for mathematic functions based on
process input / output.

• Optimization: ontology definitions for optimizations.

• Pilot parameter: ontology definitions for parameters used in each pilot.

• Process model: ontology definitions for model structures used in each pilot.

• Simulation model: ontology definitions for model information in each pilot.

A more detailed description of the ontological classes presented above can be found in
Annex I. On this foundation, the above will be extended with ontological concepts specific
to each FACTLOG instantiation, similar to the pilot ontology concepts that have been
developed in the context of the project.

D6.3 Integration guidelines (Interim Version) v1.1

20

3 Digital Twins

For the implementation of digital twins, FACTLOG makes use of the Eclipse Ditto
platform5. According to the Ditto specification, digital twins, as described in section 2.1.2.2,
are modelled as Things. As shown in Figure 3, a Thing is structured by the following
elements:

• Thing ID: The unique identifier of a Thing.

• Definition: A Thing may contain a definition, used to link it to a corresponding model
defining the capabilities/features of it.

• Attributes: Attributes describe the Thing in more detail and can be of any type.
Attributes can also be used to find Things.

• Features: A Thing may contain an arbitrary number of Features. A Feature is used
to manage all data and functionality of a Thing that can be clustered in an outlined
technical context. For different contexts or aspects of a Thing different Features can
be used which all belong to the same Thing and do not exist without this Thing.

• Policy: A Thing may contain a link to a Policy defining which authenticated subjects
may READ and WRITE the Thing or even parts of it (hierarchically specified).

• Metadata: A Thing may contain additional metadata for all of its attributes and
features, describing the semantics of the data or adding other useful information
about the data points of the twin.

Figure 3: Class diagram of Ditto's most basic entities in API version 2.

Attributes may actually vary in type and structure according to the entity they describe,
however in FACTLOG we define five high-level groups of attributes, closely following the
specifications in [6]: characteristics, status, schedule, location, reports and relationships.
Characteristics are static, in the sense that their values do not change as frequently as
status attributes, and their modification takes place mostly manually in the context of
administration; status attributes, on the contrary, are dynamically updated, mainly through
data ingested from the production infrastructure (as the values coming, e.g., from a
temperature sensor), while other interested FACTLOG modules can subsequently be
informed on such updates through the corresponding events. Further, it is to be noted that
attributes of similar nature can be defined in different ways depending on context. For
instance, location could be defined in either absolute (e.g., geographical location of a plant
or vehicle) or relative (e.g., proximity to another entity) terms; the latter is supported
through appropriate relationships attributes.

5 https://www.eclipse.org/ditto/

https://www.eclipse.org/ditto/

D6.3 Integration guidelines (Interim Version) v1.1

21

Features essentially represent FACTLOG cognitive functions at the digital twin level. The
data related to them are managed in the form of a list of properties; each property itself
can be either a simple/scalar value or a complex object. A feature may also define which
behaviour/capabilities can be expected from it, in the form of events and operations.
Events define data that are emitted by the device or entity (e.g., anomaly detected); this
kind of data would need to be transmitted to interested FACTLOG modules in a reliable
way. An operation, on the other hand, represents a function that can be performed on a
Digital Twin (e.g., turn on/off), hence trigger an action on a device. Events and operations
are mapped to feature messages sent “to” or “from” a feature, according to the Ditto
protocol; more specifically, a message sent to a feature has an operation as its subject,
while a message sent from a feature has as subject an event.

FACTLOG foresees the following types of features: analytics, simulation, optimisation and
query features. For each type, the appropriate properties must be defined in order to
represent both the required configuration aspects as well as the output of each cognitive
function and its impact on digital twin state. For instance, an analytics feature representing
some prediction functionality offered by FACTLOG would need to define the deployed
model to be used for the prediction, the query specifying the data to be fed to the model,
as well as the target values to be computed. Similarly, a query feature can be used to
address the likely requirement of accessing, through a Thing, data not stored within a
Digital Twin; this refers mainly to historical data or other information that need to be
retrieved on demand from FACTLOG persistence, on-premise databases or systems or
even external sources (e.g., weather or financial data over previous days, weeks or
months). Queries can be defined as templates leaving certain parameters to be set at run-
time (e.g., the desired timeframe), at which point they will be performed over on demand
(cf. D6.1 “Data Collection Framework” [5]) and make their results available as feature
properties.

On the basis of the principles presented above, the first step in setting up Ditto for a new
FACTLOG installation is to identify the (types of) digital twins intended to represent the
MEs of interest, and their structure (attributes, features, permitted values, etc.). Notably,
since in a given production setting there may be many ways of representing the same
entities and their interrelations, an important thing to keep in mind, for the sake of system
flexibility and sustainability, is the contextualization of representativeness of developed
digital twins. While the accurate representation of assets is important, what constitutes a
digital twin and what does not, as well as its level of detail, must be considered in the
context of the operation of the correlated objects, as well as the requirements of
FACTLOG cognition; if the usage context of the digital twin is a specific environment or
application, most likely only a subset of all the features, properties, and relationships of the
physical asset are relevant.

The starting point in this procedure should be the thorough investigation of the use cases
that FACTLOG is expected to serve in the particular production setting. This entails
investigation of the existing manufacturing infrastructure and data sources, constantly in
conjunction with the scope and needs of the rest of the FACTLOG modules, as they will be
the ones to eventually offer the intended cognitive functionalities. The resulting
representations should be consolidated and harmonized with the principles and models
presented in Section 2. Therefore, in the broader category of process digital twins,
separate types can be defined in order to represent, for instance, a weaving or a finishing
process in a woollen fabrics plant; similarly, different types of machines in a factory can be

D6.3 Integration guidelines (Interim Version) v1.1

22

defined as subtypes of equipment digital twins, each potentially characterised by its own
set of attributes and cognitive features. Although attributes and features can vary in the
general case, some are specific to certain types of digital twins. This mainly applies to
optimisation and simulation features which can only be defined for processes; in support of
these features the latter may in some cases require the definition of the process models
that describe them, that as characteristics are likewise not meaningful for other types of
digital twins.

With the above in place, the next step is the creation of definitions in Ditto for each of the
identified types of digital twins. Thus, during normal operation of the platform, authorized
users will be able to create new digital twins of any of these types as needed in a
consistent way. Currently it is assumed that definitions will follow the semantic descriptions
provided for each corresponding entity by the knowledge graph. However, in the second
integration iteration this step will be omitted; the core ontological model will be extended so
as to enable incorporating such definitions into the knowledge graphs, and from there a
definition will be able to be automatically retrieved through the appropriate API each time a
new digital twin of a certain type is to be created.

Another important aspect to consider at this stage is the specification of the rules
controlling the access to digital twins by the various applications and users. Although
policies are assigned at the level of each specific digital twin and not, for instance, at the
level of definitions, the administrative user may wish to proactively define a reference
framework to be followed during the actual definition of policies. Besides, digital twins
policies will be further investigated towards the second iteration, together with overall user
management, authentication and authorization issues.

The final step consists in the creation of a “root” digital twin, which is meant to represent
the entire factory or plant, in the sense of the overall production context that applies to all
manufacturing processes considered in a particular FACTLOG instantiation. All
subsequent digital twins that will be created will be linked to this factory digital twin through
the appropriate relationship attributes; thus, the former will be able to seamlessly inherit
ubiquitous properties, while the latter will at each point in time consistently reflect and
provide an overview of the manufacturing activity as a whole.

D6.3 Integration guidelines (Interim Version) v1.1

23

4 Data Ingestion and Management

Following the work regarding the instantiation of the FACTLOG data model, which as
output has the domain specific data model and a thorough analysis of existing data
sources, the goal of data ingestion and management is to configure the components of the
Data Collection framework (as described in D6.1 “Data Collection Framework”) in order to
enable data communication from and to the data sources.

In this context, the data needed by the platform can be placed in three broad categories:

• Realtime IoT readings: Data of this category enable the synchronization of digital
twins with their physical counterpart on the shop floor. Both the real-time aspect of
the data and their origin (IoT devices) are important here, because they imply that
supporting mechanisms should employ IoT protocols and take into account the
limitations of constrained resource devices.

• Realtime business events: Data of this category drive the FACTLOG cognition
process. For example, the modification of the priority of a production order should
trigger the re-optimization of the production schedule. The real-time aspect enables
the efficient and timely response of the platform to emergent issues regarding
production. Whereas the business aspect of the data demonstrates that their origin
is an IT system e.g. MES, and that standard data communication protocols should
be the main focus.

• Production data: Data of this category basically include any data that is needed by
FACTLOG services and is accessed on demand. Outstanding production orders of
course fall in this category, but also historical data from the previous categories,
e.g. past temperature readings, is made readily available from the same access
interface.

In order the configure data ingestion for real-time IoT readings and business events, one
has to consider whether the push or the pull data communication pattern is available. The
push model is definitely here the favourable option, since it avoids unneeded traffic
between the data source and the platform. But it also requires configuring existing IT
systems and devices with this additional data communication channel. Setting up device
credentials is one example of this.

On the premise of real-time IoT readings, the Data Collection Framework, employing the
Eclipse Hono and Apache ActiveMQ infrastructure, provides interfaces for the core IoT
data communication protocols such as REST, MQTT and AMQP. Whereas for real-time
business events, the REST interface of Eclipse Ditto will enable quick integration.

In case the push data communication pattern isn’t an option and the pull model has to be
used, the Data Collection Framework, employing the Apache NiFi framework, enables the
creation of dataflows that will enable polling the data sources in order to receive needed
data. This will of course add a fixed latency directly related to the polling period.

It must be noted here, that Apache NiFi can also be used to transform incoming data and
events to the FACTLOG data model. This is, as before, achieved by deploying dataflows
consuming events from the relevant message topics, transforming them with user-
specified scripts, and finally publishing them to the appropriate queues.

D6.3 Integration guidelines (Interim Version) v1.1

24

Regarding production data, which are to be accessed on demand, the Data Collection
Framework employs the Apache Drill framework in order to provide an SQL interface to
the underlying data source, be it csv files, a REST service or a database. The
configuration of each data source in Apache Drill includes the specification of the
communication protocol (e.g. file format) and access control credentials.

As mentioned earlier, historical IoT readings and business events are also considered
production data and should be available for querying. To this end, if the underlying data
sources do not store this data, FACTLOG offers the possibility of deploying an additional
data storage solution in the FACTLOG platform. Alongside this solution, dataflows in
Apache NiFi must be configured and consume real-time events in order to store them in
the appropriate format. This data storage solution is then attached to platform as a regular
data source.

The following sections outline the guidelines for configuring the data ingestion and
management solution, focusing on widely used IoT protocols, such as MQTT, AMQP, and
OPC UA. However, it’s important to note that FACTLOG, via the Apache NiFi dataflow
solution, supports out of the box a diverse array of protocols and data sources/sinks6.

4.1 Guidelines for MQTT/AMQP-based connectivity

ActiveMQ, as a versatile message broker, offers support for multiple protocols under a
single URL. This feature enhances the connectivity options for the FACTLOG platform,
enabling seamless communication with a wide range of IoT devices and data sources. The
following guidelines are designed to outline the essential steps and considerations
necessary for establishing robust data connectivity with FACTLOG via the MQTT and
AMQP protocols.

Configure the message broker:

• Start by configuring the message broker: When setting up a message broker, it's
crucial to define the necessary parameters to ensure reliable and efficient message
handling. This includes specifying details such as the broker's host and port,
protocol (MQTT or AMQP), and other broker-specific settings.

• Set up credentials for secure access to the message broker: Security is paramount
when dealing with data ingestion. Implement proper authentication and
authorization mechanisms by creating user credentials. This step ensures that only
authorized users or systems can access the message broker, preventing
unauthorized access to sensitive data.

• Designate queues that will be accessible to partners: By establishing queues with
specific naming conventions like "event/PARTNER/#" or "telemetry/PARTNER/#,"
you're creating a structured and organized system. This helps partners access
relevant data streams efficiently while maintaining a logical separation of data
based on its source or purpose.

• Configure access control mechanisms: Access control involves defining user
permissions on the designated queues and topics. It's essential to specify who can
read, write, or publish messages to different queues or topics within the broker.

6 https://nifi.apache.org/docs.html

https://nifi.apache.org/docs.html

D6.3 Integration guidelines (Interim Version) v1.1

25

Effective access control ensures that data is handled securely and that partners can
only access the data they are authorized to view.

• Customize additional settings: Depending on your use case, you might need to
customize additional broker settings. For instance, setting a maximum message
size is critical to avoid overloading the broker with excessively large messages.
Quality of Service (QoS) settings are also important, as they determine the
message delivery guarantees, ensuring that data is reliably transmitted and
received as required.

Ingest data:

• Create dataflows for relevant topics or queues: Dataflows serve as the pipeline
through which data are ingested, transformed, processed and forwarded to
additional destinations and services.

• Configure rate control: Rate control allows managing the flow of data, preventing
data overload or bottlenecks in the data processing pipeline. It ensures that data is
ingested at a pace that the system can handle, preventing data loss or degradation
in processing performance.

• Implement necessary data transformations and mappings: Data from the broker
might need to be transformed or mapped to fit the specific format or structure
required by northbound destinations. This can involve data conversion, enrichment,
or translation to ensure that the data is compatible with the digital twins and
services within the FACTLOG platform.

• Update relevant digital twins and store sensor readings: This is a critical step in the
data ingestion process. Once data is transformed and ready, it's used to update the
status of relevant digital twins. Additionally, the data is stored in a timeseries
database for historical analysis and reporting.

Figure 4 illustrates the data ingestion process using Apache NiFi in conjunction with the
Apache ActiveMQ message broker. It showcases the real-time reading of messages,
followed by sampling according to the configured data flow rate. Subsequently, the
messages undergo transformation, facilitating the update of relevant digital twins and their
storage in the timeseries database.

D6.3 Integration guidelines (Interim Version) v1.1

26

Figure 4: Example Apache NiFi configuration for MQTT-based connectivity

4.2 Guidelines for OPC UA-based connectivity

Connecting an OPC UA enabled data source or sink to the FACTLOG platform can be
achieved via multiple approaches. These methods not only vary in their complexity but
also in their flexibility, with each designed to accommodate different use cases and
requirements.

Develop a connector:

One option for establishing OPC UA-based connectivity is by developing a dedicated
connector capable of handling the OPC UA protocol. This connector acts as a bridge,
passing messages between the OPC UA-enabled data sources and sinks and the
platform's message broker. Various libraries can be employed for this purpose. For Java-
based solutions, the Eclipse Milo package7 is a well-known and reputable choice. On the
other hand, for C++ implementations, the Open62541 library8 is a notable open-source
alternative. While this option provides extensive configurability, it's important to consider
that it may incur additional development costs. Partner-side development may be required,
as this approach introduces a separate solution to maintain.

Direct Access via Apache NiFi:

7 https://github.com/eclipse/milo
8 https://github.com/open62541/open62541

https://github.com/eclipse/milo
https://github.com/open62541/open62541

D6.3 Integration guidelines (Interim Version) v1.1

27

An alternative method involves accessing OPC UA-enabled data sources and sinks
directly from within the Apache NiFi framework. While this is a simpler solution with the
advantage of the entire configuration taking place within Apache NiFi, it has some
limitations to be aware of. Although there are NiFi extensions available, such as the
Tempus IIoT/IoT OPC UA NiFi extension9, it's important to note that many of these
extensions are outdated. Additionally, most extensions primarily support one-way
communication. This option is suitable for straightforward use cases, but it may not fully
cover complex two-way communication scenarios.

Leverage Apache MiNiFi:

As per the recommendation of the Data Collection Framework, the third option involves
employing Apache MiNiFi, particularly the C++ solution10. This option stands out for
several reasons. By deploying Apache MiNiFi on premises, you create a powerful
intermediary that shares the same philosophy and technology as Apache NiFi, which
handles data within the FACTLOG platform. This approach brings data handling closer to
the source, reducing network traffic and associated costs. And, although it introduces a
separate solution to maintain, it ensures that data is efficiently collected and transmitted
while maintaining compatibility with the platform's overarching data management strategy.
Figure 5 presents the two-way secure communication between Apachne MiNiFi to Apache
NiFi.

Figure 5: Two-way secure communication of Apache NiFi to Apache MiNiFi

These varied approaches for OPC UA-based connectivity demonstrate the flexibility and
adaptability of FACTLOG's data ingestion and management framework. The choice of
method ultimately depends on the specific use case and requirements, balancing factors
such as development efforts, communication needs, and maintenance considerations.
Each approach is designed to optimize data flow, ensuring that OPC UA-enabled data
sources and sinks seamlessly integrate with the FACTLOG platform.

Below you may find the guidelines for configuring OPC UA connectivity by employing
Apache MiNiFi.

Build and Deploy Apache MiniFi:

• Begin by building Apache MiNiFi while ensuring that OPC UA support is enabled.
This involves following the provided instructions to compile MiNiFi with the
necessary modules11.

9 https://github.com/hashmapinc/nifi-opcua-bundle
10 https://nifi.apache.org/minifi/download.html
11 https://nifi.apache.org/minifi/getting-started.html

https://github.com/hashmapinc/nifi-opcua-bundle
https://nifi.apache.org/minifi/download.html
https://nifi.apache.org/minifi/getting-started.html

D6.3 Integration guidelines (Interim Version) v1.1

28

• Secure the channel connecting Apache MiNiFi to the FACTLOG platform by
configuring and providing the required certificates and specifying communication
ports.

• Deploy Apache MiNiFi at the network edge and configure it to run as a service on
the target machine, ensuring that it's always available to handle OPC UA data.

Configure Apache MiNiFi:

• Configure Apache MiNiFi input and output ports to efficiently send and receive data
to and from Apache NiFi, establishing a seamless data transfer pipeline.

• Define dataflows that handle the execution of OPC UA commands and the receipt
of results. Apache MiNiFi provides processors such as FetchOPCProcessor for
requesting data from OPC UA enabled sources and PutOPCProcessor for updating
OPC UA data sinks.

• Tailor your configuration to meet specific scenario requirements by defining settings
for data polling, filtering, and other aspects that enhance data handling.

• Convert your Apache NiFi dataflow to Apache MiNiFi format and deploy it to ensure
smooth interoperability between the two components.

Configure Apache NiFi:

• Configure Apache NiFi to send and receive data to and from Apache MiNiFi,
fostering a bidirectional data exchange between the edge and the platform.

• Create mappings that align digital twin attribute paths with OPC UA nodes,
facilitating the smooth transformation and integration of data.

• Configure data transformation processes to ensure that data flows seamlessly
between digital twins and OPC UA-enabled sources.

Attach two-way communication functionalities to the digital twins by configuring the
appropriate dataflows, allowing both data retrieval and updates.

Figure 6 presents an example configuration of Apache MiNiFi, showcasing its ability to
handle data requests from OPC UA-enabled sources and update OPC UA data sinks.
Apache MiNiFi supports the deployment of additional dataflows, which can be utilized to
periodically poll OPC UA data sources and forward the collected data to the FACTLOG
platform.

D6.3 Integration guidelines (Interim Version) v1.1

29

Figure 6: Example Apache MiNiFi configuration for OPC UA-based connectivity

D6.3 Integration guidelines (Interim Version) v1.1

30

5 Process Modelling

In the context of FACTLOG, Process Modelling denotes a generic approach with all
related methods, algorithms, mechanisms, services and tools it directly uses, integrated
into an overall modelling application or platform. In any specialized use case, these
methods, algorithms and mechanisms do not change. It is just the Model (see below)
representation per se that changes.

In the same context, a Model is the representation of an industrial production system
using either the continuous (flowchart) or the discrete (petri-net) process modelling
methodologies. Key process control settings, namely, parameters, may continuously be
updated, by connecting to a real-time monitoring system (sensor network) or by human
input, maintaining a digital shadow of the physical system. Parameters that are not
monitored are dynamically estimated with the Process Modelling algorithms, creating a
detailed representation of the current industrial system in each case.

Another important concept that needs to be introduced here is the concept of Model
Instance. Model instance is an exact copy of the model in question, representing the
physical system’s state at the moment of instantiation. It can be modified (change
parameters values) without affecting the actual model (and the corresponding physical
system). Model instances are used for scenario building, simulation and assessment and
optimisation support. The model instance is of imperative importance as it is going to be
used extensively during the deployment of the FACTLOG platform.

Process Simulation and Modelling (PSM) Tool, is the core modelling tool of the
FACTLOG system, employing the Process Modelling approach and assisting in building,
deploying and using a Model of the industrial system considered. There are two
realisations of the PSM tool.

1. The standalone PSM Tool, operating as an interactive graphical modelling
environment and used for the creation, deployment and update of a Model.

2. The PSM API, used for interconnection with external AI tools, Optimization tools,
Analytics tools, etc.

The integration of the process modelling with the rest of the project is intended to occur
with the help of the PSM API. Both for discrete and continuous process modelling, the API
will expose all the required functionality and provide the interface to achieve the interaction
between different project modules. The integration guidelines presented here cover up to
API level. In order to make clear what the API offers and how it is intended to be used in
FACTLOG, Table 2 summarises the most important functions required to interact with this
API.

D6.3 Integration guidelines (Interim Version) v1.1

31

Table 2 – Description of the API functions

API Functions Description of Function

Model Management

RegisterModel (name, modelSpec)
Adds a new model in the registry. The

modelSpec is the .xml representation of the
model, as produced by the standalone PSM tool.

UpdateModel (modelID, name, modelSpec) Updates the specified model.

RemoveModel (modelID) Removes the specified model from the registry.

Create Instance (modelID)

Creates a new instance of the specified model.
The instance is an isolated exact copy of the

model that can be used for scenario simulation,
optimization, etc., without affecting the model

(and consequently the physical system).

RemoveInstance (instanceID)
Removes the specified instance from the

registry.

System Parameters

GetParameter (instanceID, symbol)
Returns the current value of the specified model

parameter.

GetParameters (instanceID)
Returns a collection of all model (system wide)

parameters, including their values.

SetParameter (instanceID, symbol, value) Updates the value to the specified parameter.

SetParameters (instanceID, parameters)
Bulk updates the values of all process

parameters.

Calculations

Calculate (instanceID)
Performs a recalculation of the specified model
instance. Returns a structure of model results,

including all parameters.

CalculateUnit (instanceID, unit)
Performs a local recalculation of the specified
process. Returns a structure of the specified

process results only.

These functions expose the functionalities of the Process Simulation and Modelling (PSM)
tool through the API built to serve the FACTLOG project. As it is clear from Table 2, the
API described is useful for every part of the lifecycle; starting from the deployment of the
model created in the standalone PMS tool up to the end-of-life of the model with the model
removal. With the help of Figure 7 we can identify the connections between the API
functions and the steps on the lifecycle of a model from Deployment through Scenario
Assessment and Optimization to System Update and eventually to the end-of-life.

D6.3 Integration guidelines (Interim Version) v1.1

32

Figure 7: Life Cycle of the Process Modelling Module

D6.3 Integration guidelines (Interim Version) v1.1

33

6 Analytics Modules

The role of the analytics module is to build models of the manufacturing assets from
historical data where first-principle modelling is not available or is prohibitively expensive.
This includes for example detecting an anomaly in the sensor readings of a machine in
production; predicting the future state of the production line from its current state and
operational settings; or predicting a complex property from simpler observations. An
example of the latter from the pilots is predicting the percentage of chemical impurities of
LPG from its temperature, pressure and similar measurements in the TUPRAS pilot.

The modelling methods use a variety of machine learning (ML) models and can be split
into three typical stages of the ML workflow:

1. Model Learning
2. Model Deployment
3. Model Querying

The structure of the stages and their relationships are illustrated in Figure 8.

Figure 8: Structure of the three stages of the typical machine learning workflow and the relationships among
them.

Model learning is the initial stage of the workflow where the model is produced from the
data. The main inputs to this stage are two types of data: observation data and target
variable data. The observation data holds information on the independent variables from
which the model produces the prediction, e.g., the sensor readings, operational settings,
process logs. The target variable data on the other hand is the dependant variable we are
predicting, e.g., whether the machine state is anomalous, the level of sulphur in LPG, the
distillation column temperature in 1 hour. This data is typically of greater volume and is
archived in some way, such as in a set of large files or a relational database.

D6.3 Integration guidelines (Interim Version) v1.1

34

Besides the data, this stage needs a set of modelling parameters as input. These
parameters include the selection of the ML algorithm as well as its settings (e.g., learning
rate, network structure, regularization coefficient). These parameters are set in a
structured file such as JSON and are typically mostly set at model design time with only
certain technical parameters possibly changing over time.

Note that the input data, both observation and target, may need pre-processing before
being used in the actual learning algorithm. This includes transformations such as scaling,
normalisation, smoothing, discretisation or others. For the high-level discussion in this
document, we consider such pre-processing as part of the learning algorithm and include
its parameters as part of the model parameters.

The model produced is conceptually a mathematical function12 that transforms the input
into an output. Technically it is serialised into a format internal to the analytics module
(serialisation formats of the ML libraries are used). This format is suitable for transfer and
storage. Note that archiving past versions of models can be useful for comparisons or for
when inspecting historical behaviour of the system.

The stage of learning the model needs to be done only occasionally (e.g., once per year or
even less frequent), when the behaviour of the modelled system changes either over time
through wear and tear (concept drift) or due to upgrades or modifications (e.g., new
machines, sensors…). The model design is done by a data specialist offline and, though
occasional inspection and tweaking is prudent, it is unlikely that it would need to be
repeated, unless the modelled system changes so much it is basically equivalent of
modelling a new system. Model design includes selecting the learning algorithms, the
model structure and all the parameters of learning.

Once the model is built, it is made available in the model deployment stage. The purpose
of this stage is to make the model accessible in some standardised technical way so that
other modules and systems can make use of it. There are two technically different
deployment set-ups: as a REST service or on a messaging queue.

As a REST service the model is published through the network (either locally or online)
and is accessible through the HTTP(S) protocol. The service needs to be explicitly queried
by sending a (typically POST) request and the model prediction is sent in the reply. If the
model is deployed on a messaging queue (such as for example Apache Kafka13), then the
service automatically listens for appropriately tagged messages and returns the results
back to the queue tagged accordingly.

Besides the model to be deployed the other input to this stage are the deployment
parameters. These are the technical settings of the deployment such as the IP address
and port number of the REST service or the message tags that the service should
subscribe to on the messaging queue.

The deployment is an occasional operation that is typically performed by an IT specialist in
charge of the computing infrastructure where the service runs. It needs to be repeated if

12 Strictly formally this may not always be true, but it is close enough for our consideration here.
13 https://kafka.apache.org/

https://kafka.apache.org/

D6.3 Integration guidelines (Interim Version) v1.1

35

the model changes or if for example new instances of the service need to be spawned to
handle some increased workload. This stage does not depend on the structure of the data.

The final stage, model querying, is where the model is used to produce predictions for
other systems and modules that need their outputs. New data is input and the model
computes the corresponding outputs. The query mechanism technically depends on the
deployment type selected in the model deployment phase. In both cases a well-defined
API is used.

The data input are fresh instances of observation data such as the ones used for model
learning. Note that if pre-processing was used for learning, the same transformation needs
to be applied to the query data. In practice this can be bundled with the model as long as
the data conforms to the same schema as the learning input. The target variable will also
be predicted in the same possibly pre-processed form as it was used for learning and may
need some interpretation.

The queries are produced by dependent systems and can be frequent. For example, one
query per minute by the monitoring dashboard that sends fresh readings from the sensors
to check for anomalies or several thousand in a short burst from the optimisation module
that is evaluating the performance of different potential operational scenarios.

D6.3 Integration guidelines (Interim Version) v1.1

36

7 Optimization Toolkit

The Optimization Toolkit is an integral part of the FACTLOG offering and it is
interconnected with all modules within the FACTLOG system. In order for the Optimization
Toolkit to be able to produce valuable results in the different cases, a series of steps need
to take place upon each new instantiation of the system.
In short, the process includes steps pertinent to the identification of the optimization
problem(s), the mathematical formulation of the problem(s) and the development of the
corresponding solution method, the production of the respective template(s) and their
introduction into the Toolkit, the beta testing of the proposed solution (initially with
simulated data) and the interconnection with the other modules guided by the cognitive
process that is to be put in place. In parallel, there is the need to identify, collect and
transform the necessary data so as for them to be reflected in the overall FACTLOG data
model for the new instantiation. Lastly and following the technical evaluation of the new
instantiation, configurations pertinent to access rights are finalized and the Optimization
Toolkit is ready to enable the provision of decision supporting results on the different
optimization related problems.

Sequentially presenting the aforementioned, the integration guidelines are as follows:

1. In the process of a new FACTLOG instantiation, a step that is required relevant to
Optimization includes the bilateral discussions needed with the key personnel
involved in the pilot, towards understanding the actual Optimization needs and
respective problem(s) to be solved. Although in most cases such problems can be
classified in an already identified broad category (e.g., Production Scheduling), the
actual problem, with its specificities and its peculiarities, the way it manifests in
each case and hence its parameters will differ from one pilot to another. Through
discussions and user requirements elicitation, we will be able to (a) derive solid
conclusions about the nature of the problem at hand, (b) the available data
(Historical and Live) that can be utilized to address the problem and (c) the events
and situations triggering a new optimization request. This step will lead us to the
identification of the relevant constraints and Objective Function(s), the needed
interactions with the remaining FACTLOG modules and the data requirements from
the pilot.

2. Upon completion of the previous step, the types of problems are examined and the
solvers and solutions approaches are selected and developed. The capabilities of
the Optimization Toolkit, driven by the utilized solvers, include solving problems of
linear programming, mixed integer programming, quadratic programming,
quadratically constrained programming and combinatorial optimization problems.
Indicatively and with respect to Industry 4.0 all typically identified problems can be
covered by the Optimization Toolkit (e.g. Production scheduling, capacity planning,
maintenance optimization) both for process and discrete manufacturing industries.

3. The next step is the initiation of the template that includes the mathematical
formulation of the problem and its programming on the one hand and the alignment
of the data needed as input and provided as output from and to all FACTLOG
modules. Having completed this phase, the Optimization Toolkit internally has a
new template reflecting the new pilot instantiation and next in the integration
process is the modules’ integration and internal technical testing which can take
place with real or simulated data.

D6.3 Integration guidelines (Interim Version) v1.1

37

The aforementioned steps (1-3) outline the prerequisite internal steps for the Optimization
Toolkit so as to be able to proceed to the next phase of integration with the remaining
modules of the FACTLOG system. The integration guidelines of the Optimization Toolkit to
the FACTLOG system relate to the different interfaces it has for connecting and
interchanging data as presented in D1.3 “System Architecture and Technical Specification”
and the following figure.

Figure 9: Optimization Toolkit internal architecture

The four interfaces namely Management, Access, Data Acquisition and Feedback are the
main interfaces for interchanging data with the FACTLOG System and the integration
guidelines are as follows:

• Management Interface: Through the Management Interface, the Optimization
Toolkit can be instantiated to the different pilots. Therefore, through this settings’
interface, access rights are given to the different modules and the reflection of the
cognitive process of FACTLOG is instantiated for the new pilot.

• Access Interface & Data Acquisition: These two different interfaces, as described
in D1.3 “System Architecture and Technical Specification”, are responsible to
interact with the other FACTLOG modules (i.e. DTs, MSB etc.) in order to receive
the necessary data as guided by the Pilot Template towards solving the respective
optimization problem(s). The integration guidelines for the specific services include
the need for alignment of the data needed by the Optimization to the data offered by
other modules.

• Feedback Interface: Lastly the Feedback interface service is responsible for the
transfer of the optimization output to the respective module(s) for further
consumption in the FACTLOG system. The integration guidelines for the specific
services include the need for alignment of the data produced by the Optimization
Toolkit to the data needed by other modules.

Upon new instantiation of the FACTLOG system, the Access Interface, the Data
Acquisition Interface and the Feedback interface need to be technically evaluated for their
appropriate integration with the remaining FACTLOG modules to ensure appropriate
execution and interchange of data. Additionally to the interfaces, a round of testing is

D6.3 Integration guidelines (Interim Version) v1.1

38

required also for the Optimization Controller and the Optimization Engine of the Toolkit in
order to evaluate the problem solution with the pilot specific data (real or simulated) at the
respective scale and time needed based on the gathered requirements.

Following the internal module specific tests and the module-to-module respective tests the
Optimization Toolkit is initialized to the pilot and ready for the initial system-wide tests.

D6.3 Integration guidelines (Interim Version) v1.1

39

Annex I

Table 3 – FACTLOG ontology classes under IoF and BFO framework

Class SuperClass Class Name Description

FACTLOG_0001 Occurrent Occurrent (see BFO)

FACTLOG_0001_1 FACTLOG_0001 Process p is a process = Def. p is an occurrent that has temporal proper
parts and for some time t, p s-depends_on some material entity at
t. (axiom label in BFO2 Reference: [083-003])

FACTLOG_0001_2 FACTLOG_0001 Spatiotemporal region A spatiotemporal region is an occurrent entity that is part of
spacetime. (axiom label in BFO2 Reference: [095-001])

FACTLOG_0001_3 FACTLOG_0001 Service Service is delivered when the service implements the system
function

FACTLOG_0001_4 FACTLOG_0001 Process boundary a temporal part of a process & p has no proper temporal parts.
(axiom label in BFO2 Reference: [084-001])

FACTLOG_0002 Continuant A continuant is an entity that persists, endures, or continues to
exist through time while maintaining its identity. (axiom label in
BFO2 Reference: [008-002])

FACTLOG_0002_1 FACTLOG_0002 Generically dependent continuant b is a generically dependent continuant = Def. b is a continuant
that g-depends_on one or more other entities. (axiom label in
BFO2 Reference: [074-001])

FACTLOG_0002_1_1 FACTLOG_0002_1 Information content entity A generically dependent continuant that is about some thing.

FACTLOG_0002_1_1_1 FACTLOG_0002_1_1 Process_model Process models are processes of the same nature that are
classified together into a model.

FACTLOG_0002_1_1_2 FACTLOG_0002_1_1 Optimization Is the selection of a best element, with regard to some criterion,
from some set of available alternatives.

FACTLOG_0002_1_1_3 FACTLOG_0002_1_1 Directive information entity A plan specification which describes the inputs and output of
mathematical functions as well as workflow of execution for
achieving an predefined objective. Algorithms are realized usually
by means of implementation as computer programs for execution
by automata.

FACTLOG_0002_1_1_3_1 FACTLOG_0002_1_1_3 Action specification A directive information entity that describes an action the bearer
will take

FACTLOG_0002_1_1_3_2 FACTLOG_0002_1_1_3 Plan specification A directive information entity with action
specifications and objective specifications as parts
that, when concretized, is realized in a process in
which the bearer tries to achieve the objectives by
taking the actions specified.

FACTLOG_0002_1_1_4 FACTLOG_0002_1_1 Anomaly Anomalies are occurrences that deviate from the predictions of
economic or financial models that undermine those models' core
assumptions.

FACTLOG_0002_1_1_5 FACTLOG_0002_1_1 pilot_parameter Parameters which are used in each pilot.

FACTLOG_0002_1_1_6 FACTLOG_0002_1_1 simulation_model Simulation models which are developed based on Artificial
Intelligence (AI) algorithms.

FACTLOG_0002_2 FACTLOG_0002 Independent continuant
b is an independent continuant = Def. b is a continuant which is
such that there is no c and no t such that b s-depends_on c at t.
(axiom label in BFO2 Reference: [017-002])

FACTLOG_0002_2_1 FACTLOG_0002_2 Immaterial entity
http://purl.obolibrary.org/obo/bfo.owl

FACTLOG_0002_2_1_1 FACTLOG_0002_2_1 Site
b is a site means: b is a three-dimensional immaterial entity that
is (partially or wholly) bounded by a material entity or it is a
three-dimensional immaterial part thereof. (axiom label in BFO2
Reference: [034-002])

FACTLOG_0002_2_2 FACTLOG_0002_2 Material entity
http://purl.obolibrary.org/obo/bfo.owl

FACTLOG_0002_2_2_1 FACTLOG_0002_2_2 Object
http://purl.obolibrary.org/obo/bfo.owl

FACTLOG_0002_2_2_1_1 FACTLOG_0002_2_2_1 Machining tool
Machining tool is an artifact for handling or machining metal or
other rigid materials, usually by cutting, boring, grinding,
shearing, or other forms of deformation.

FACTLOG_0002_2_2_1_2 FACTLOG_0002_2_2_1 Pocessing stock
Pocessing stock is an artifact in an industrial site corresponds to
any material in the process of producing or manufacturing
finished product.

FACTLOG_0002_2_2_1_2_1 FACTLOG_0002_2_2_1_2 Input processing stock
Input processing stock is a processing stock to be fed into a
production or manufacturing process.

D6.3 Integration guidelines (Interim Version) v1.1

40

FACTLOG_0002_2_2_1_2_2 FACTLOG_0002_2_2_1_2 Output processing stock
Output processing stock is a processing stock that is a result of
production or production or manufacturing process.

FACTLOG_0002_2_2_1_2 FACTLOG_0002_2_2_1 Person
An object that is a human being.

FACTLOG_0002_2_2_2 FACTLOG_0002_2_2 Object aggregate
http://purl.obolibrary.org/obo/bfo.owl

FACTLOG_0002_2_2_2_1 FACTLOG_0002_2_2_2 Artifact aggregate
A collection of artifacts that designed or aranged by some Agent
to realize a certain Function.

FACTLOG_0002_2_2_2_1_1 FACTLOG_0002_2_2_2_1 Production line
Production line is an artifact aggregate enabling a set of
sequential operations established in a plant site where
components are assembled to make a finished article or where
materials are put through a refining process to produce an end-
product that is suitable for onward consumption

FACTLOG_0002_2_2_2_1_2 FACTLOG_0002_2_2_2_1 Production plant
An Artifact that is consisting of buildings and machinery, or
more commonly a complex having several buildings, where
workers manufacture goods or operate machines processing one
product into another.

FACTLOG_0002_2_2_2_2 FACTLOG_0002_2_2 Organization
An object aggregate that corresponds to social instititutions such
as companies, societies etc. that does something

FACTLOG_0002_3 FACTLOG_0002 Specifically dependent continuant
b is a specifically dependent continuant = Def. b is a continuant &
there is some independent continuant c which is not a spatial
region and which is such that b s-depends_on c at every time t
during the course of b’s existence. (axiom label in BFO2
Reference: [050-003])

FACTLOG_0002_3_1 FACTLOG_0002_3 Quality
http://purl.obolibrary.org/obo/bfo.owl

FACTLOG_0002_3_1_1 FACTLOG_0002_3_1 Organization_Competence

FACTLOG_0002_3_1_2 FACTLOG_0002_3_1 Person competency
is any quality including any demonstrable characteristics and
skills by an individual person part of a group of persons that
enable and improve the efficiency or performance of predefined
jobs/tasks/activites

FACTLOG_0002_3_1_3 FACTLOG_0002_3_1 Production_Line_Competence

FACTLOG_0002_3_2 FACTLOG_0002_3 Realizable entity
http://purl.obolibrary.org/obo/bfo.owl

D6.3 Integration guidelines (Interim Version) v1.1

41

References

[1] FACTLOG Deliverable D1.1 (2020). Reference Scenarios, KPIs and Datasets.

[2] FACTLOG Deliverable D1.2 (2020). Cognitive Factory Framework.

[3] FACTLOG Deliverable D1.3 (2020). System Architecture and Technical Specifications.

[4] FACTLOG Deliverable D2.1 (2020). Analytics System Requirements and Design

Specification

[5] FACTLOG Deliverable D6.1 (2021). Data Collection Framework (Interim Version)

[6] ISO/DIS 23247-3, “Automation systems and integration — Digital Twin framework for

manufacturing — Part 3: Digital representation of manufacturing elements”, Draft

International Standard, Reference number: ISO/DIS 23247-3:2020(E).

