

Deliverable D5.2

Robust and energy-aware planning and
scheduling

Version
1.0

Lead Partner
AUEB

Date
31/03/2022

Project Name
FACTLOG – Energy-aware Factory Analytics for Process Industries

Ref. Ares(2022)2367215 - 30/03/2022

2

Call Identifier
H2020-NMBP-SPIRE-2019

Topic
DT-SPIRE-06-2019 - Digital technologies for improved
performance in cognitive production plants

Project Reference
869951

Start date
November 1st, 2019

Type of Action
IA – Innovation Action

Duration
42 Months

Dissemination Level

X PU Public

 CO Confidential, restricted under conditions set out in the Grant Agreement

 Cl Classified, information as referred in the Commission Decision 2001/844/EC

Disclaimer

This document reflects the opinion of the authors only.

While the information contained herein is believed to be accurate, neither the FACTLOG consortium as a whole, nor any
of its members, their officers, employees or agents make no warranty that this material is capable of use, or that use of the
information is free from risk and accept no liability for loss or damage suffered by any person in respect of any inaccuracy
or omission.

This document contains information, which is the copyright of FACTLOG consortium, and may not be copied, reproduced,
stored in a retrieval system or transmitted, in any form or by any means, in whole or in part, without written permission.
The commercial use of any information contained in this document may require a license from the proprietor of that
information. The document must be referenced if used in a publication.

D5.2 Robust and energy-aware planning and scheduling V1.0

3

Executive Summary

This deliverable reports on the progress conducted in WP5 Robust Optimization Methods
relating to the implementation of the State-of-the-art Optimization Methods of the FACTLOG
project. It reflects the work performed in the context of the project Task 5.2 Robust Energy-
aware production scheduling and T5.3 Resource-aware production planning, and the
outcomes thereof. Following the implementation of the overall FACTLOG system and the
overall project evolution in the current tasks the progressive evolution of the algorithms and
methods as well as their implementation (in line with T5.4 Robust Optimization as a Service)
took place and as such, this deliverable proceeds with describing the updates on the
optimization methods as well as the updated version of the optimization toolkit
implementation.

Starting from the toolkit itself, as it was designed to be modular, expandable, and capable
to be adapted and introduced in different cases, it has progressed to be able to handle all
pilots’ incoming data from the FACTLOG infrastructure and the pilots themselves. It solves
the problems presented in D5.1 and follows the respective design and use cases.
Optimization is initiated on an ad hoc basis with respective received signals from the
FACTLOG ecosystem and output is return respectively.

Besides the actual development of the algorithms for the optimization engine, progress was
made with respect to the proposed optimization approaches, algorithms and tools in the
corresponding cases. Starting from the TUPRAS case relevant to the Oil Refineries and on-
specs Liquefied petroleum gas (LPG) production, a mathematical programming approach to
minimize the energy consumed for planning on-specs LPG production was developed and
integrated in the Optimization toolkit. In this case, the problem is formulated as a Mixed
Integer Linear Program (MILP) that integrates network flow and blending constraints in order
to identify the most energy-efficient combination of configurations for all process units of the
LPG purification process to achieve on-specs LPG production by calculating the optimal on-
specs recovery plan. The MILP presented in D5.1 is further updated in this deliverable
leading to a crisper presentation of the LPG purification process. Additional work includes
the examination of the application of Data Envelopment Analysis assessment for identifying
the dominant operational scenarios and hence reducing the solution space, the exploration
of approaches such as Chance Constrained Programming and Interval Linear Programming
to address uncertainty in the level of impurities in the input feed as well as handling the input
feed rate and their incorporation in the proposed MILP approach. Lastly, the presentation of
the concept of state-aware optimization which also utilizes other technological services of
FACTLOG, such as the corresponding Machine Learning and Simulation tools.

Moving forward from TUPRAS to the second pilot and respective problem solved by the
optimization module we have the PIACENZA case. In the PIACENZA case, there is a three-
fold progress: (a) the Weaving scheduling problem (b) solving the (Parallel Machine
Scheduling) PMS problem on unrelated machines with sequence-dependent setup times,
job splitting and resource constraints and (c) design of effective exact methods. Therefore,
in this case we provide novel and effective lower bounds and a three-stage heuristic for the
makespan minimization problem identified at the pilot case. Additionally, we have
numerically evaluated the algorithms developed on benchmark instances, as well as on
experiments based on real datasets. Additional experiments enabled us to provide important

D5.2 Robust and energy-aware planning and scheduling V1.0

4

findings on the problem parameters as business consultation thus deriving to policies for
unexpected events

The third case in the FACTLOG project the Optimization Toolkit handles is the BRC Steel
production case. This is a multistage flowshop with parallel machines at each stage. The
main challenge in this particular case was the lack of digitized information and the large-
scale size of the problem. That combined with the inherent difficulty in needing cranes to
load / unload machines create major bottlenecks in the production process. However, a
significant progress was the incorporation of the cranes' movements and imitation of the
process as accurate as possible. The most challenging issue faced was the tracking of the
starting and the ending point for each job which needed to be moved. The goal of
optimization in this case was to find the optimal production schedule in relation to the
makespan or the total lateness of tardy jobs. The BRC case was solved utilizing Mixed-
Integer Linear Programming (MILP) for an extended flexible multistage flowshop problem
with machine dependent setup times. Nevertheless, to capture the cranes' movement the
MILP is transformed to a Mixed Integer Quadratic Problem but in future research we can
linearize it. Preliminary experimentation showed that the MIP model can handle instances
of medium size quite easily and can provide production policies that balance between the
criterion of minimum makespan and lateness. Finally, by finding some Lower Bound (LB) for
the decision variables we obtained better computational times.

Lastly, the fourth case in the FACTLOG project the Optimization Toolkit deals with is the
CONTINENTAL case. This is a discrete automotive part manufacturing environment that is
modelled as a 2-stage assembly flow shop with resource constraints. Key challenge is the
integration of maintenance planning and scheduling together with the scheduling of
production orders at the production lines. To that end, an analytics module is providing
maintenance windows and the goal is to schedule maintenance activities during periods that
will have a minimum impact on the schedule in terms of makespan and tardiness. A rigorous
Constraint Programming formulation is proposed for modeling and solving the problem.
Results on synthetic and real data sets validate the applicability of the model and
demonstrate the efficiency, effectiveness and scalability of the proposed Constrained
Programming (CP) approach.

D5.2 Robust and energy-aware planning and scheduling V1.0

5

Revision History

Revision Date Description Organisation

0.1 1/03/2022 ToC AUEB

0.2 10/03/2022
Provision of Optimization Input for
the cases of PIA, TUPRAS, BRC

AUEB, UNIPI

0.3 15/03/2022 Released for Internal review AUEB

0.4 22/03/2022
Addition of CONT case and minor
revisions

AUEB

0.5 27/03/2022 Provision of Review comments TUC, QLECTOR

1.0 30/03/2022
Introduction of review comments
and finalized document for upload AUEB

Contributors

Organisation Author E-Mail

UNIPI Pavlos Eirinakis pavlose@unipi.gr

UNIPI Grigoris Koronakos gregkoron@gmail.com

UNIPI Konstantinos Kaparis k.kaparis@uom.edu.gr

UNIPI Penny Kalpodimou pennykalp@unipi.gr

UNIPI Stathis Plitsos stathisp@aueb.gr

AUEB Kyriakos Bitsis bad19024@uom.edu.gr

AUEB Gregory Kasapidis gkasapidis@aueb.gr

AUEB Panagiotis Repousis prepousi@aueb.gr

AUEB Yiannis Mourtos mourtos@aueb.gr

AUEB Stavros Lounis slounis@aueb.gr

AUEB Georgios Zois georzois@aueb.gr

mailto:pavlose@unipi.gr
mailto:gregkoron@gmail.com
mailto:k.kaparis@uom.edu.gr
mailto:pennykalp@unipi.gr
mailto:stathisp@aueb.gr
mailto:bad19024@uom.edu.gr
mailto:gkasapidis@aueb.gr
mailto:prepousi@aueb.gr
mailto:mourtos@aueb.gr
mailto:slounis@aueb.gr
mailto:georzois@aueb.gr

D5.2 Robust and energy-aware planning and scheduling V1.0

6

Table of Contents

Executive Summary ... 3

Revision History .. 5

1. Introduction .. 11

1.1 Purpose and Scope .. 11

1.2 Relation with other Deliverables ... 11

1.3 Structure of the Document ... 11

2. Optimization-As-a-Service .. 12

2.1 Functional Requirements ... 12

2.2 Technology Stack ... 19

2.3 Web API documentation ... 20

2.3.1 API calls documentation .. 20

2.3.2. JSON bodies description .. 23

3. Oil Refineries: Pilot Case by TUPRAS ... 26

3.1 Introduction .. 26

3.2 The LPG purification process ... 28

3.3 Related literature .. 29

3.4 MILP for on-specs LPG production and recovery ... 32

3.4.1 Modelling approach ... 32

3.4.2 The proposed MILP ... 33

3.4.3 Removing operational scenarios via Data Envelopment Analysis 37

3.5. Handling input uncertainty ... 38

3.5.1 Handling uncertainty in the input feed rate .. 38

3.5.2 Handling uncertainty in the input feed impurities ... 39

3.6 State-aware optimization .. 40

D5.2 Robust and energy-aware planning and scheduling V1.0

7

4. Textile Industry: Pilot Case by PIACENZA .. 42

4.1 Introduction .. 42

4.2 Problem Description ... 44

4.2.1 Problem A: Weaving Scheduling - Makespan .. 44

4.2.2 Problem B: Weaving Scheduling - Tardiness... 48

4.3 An exact method Benders Decomposition ... 48

4.3.1 LBBD for Weaving Scheduling - Makespan ... 49

4.3.2. LBBD for Weaving Scheduling – Tardiness .. 53

4.4 Benchmarking on random datasets .. 56

4.4.1. Benchmark experiments for Weaving Scheduling - Makespan 56

4.4.2. Benchmark experiments for Weaving Scheduling – Tardiness 59

4.5. Results on PIACENZA data .. 60

4.5.1. Results of Weaving Scheduling – Makespan .. 60

4.5.2. Results of Weaving Scheduling – Tardiness... 61

4.6. Decision Support ... 61

4.6.1. Sensitivity Analysis ... 61

4.6.2. Maintenance ... 64

4.6.3. Malfunction ... 65

4.7. Concluding remarks .. 65

5. Steel Manufacturing: Pilot Case by BRC ... 66

5.1 Introduction .. 66

5.1.1 Scheduling ... 66

5.1.2 Case Description for BRC .. 67

5.2 Literature Review ... 69

5.3 Model and/or Solution method (Demonstration) ... 70

5.3.1 Notation ... 70

D5.2 Robust and energy-aware planning and scheduling V1.0

8

5.3.2 Assumptions .. 72

5.3.3 Mathematical Formulation ... 73

5.4 Computational Results ... 75

6. Automotive Manufacturing: Pilot Case by CONTINENTAL 77

6.1 Introduction .. 77

6.2 Literature Review ... 78

6.3 Model formulation and solution method .. 82

6.3.1 Notation ... 82

6.3.2 Constraint Programming Formulation .. 83

6.4 Computational Experiments ... 86

6.4.1 Experiments on synthetic benchmark data sets... 86

6.4.2 Experiments on real data ... 87

7. References ... 99

D5.2 Robust and energy-aware planning and scheduling V1.0

9

List of Figures

Figure 1. optEng Functional Requirements .. 13

Figure 2. optEngine Data Requirements .. 18
Figure 3. optEngine data Flow ... 19
Figure 4. optEngine data stack .. 19
Figure 5: An example of a LPG purification process flow network 29
Figure 6. Collaboration of Analytics, Simulation and Optimization modules for operational
scenarios ... 40
Figure 7: Optimal Solution of Table 6 .. 47
Figure 8: Solution changes when increasing |M| under different criteria 62
Figure 9: Solution Improvements when increasing DSL for R = 3 63
Figure 10: Solution Improvements when increasing DSL for R = 3 63

Figure 11: Gantt chart for optimal solution for Example Instance 64

Figure 12: Gantt chart for solution of instance with maintenance interval 64

Figure 13: Gantt chart for solution of instance with machine malfunction 65
Figure 14: BRC Facility Layout .. 68
Figure 15: Resource availability over time for Policy 1 without maintenance activities 88
Figure 16: Gantt Chart considering the resource replenishment according to Policy 1 without
maintenance activities.. 89
Figure 17: Resource availability over time for Policy 1 with maintenance activities 89
Figure 18: Gantt Chart considering the resource replenishment according to Policy 1 with
maintenance activities.. 90
Figure 19: Resource availability over time for Policy 2 without maintenance activities 90

Figure 20: Gantt Chart considering the resource replenishment according to Policy 2 without
maintenance activities.. 91
Figure 21: Resource availability over time for Policy 2 with maintenance activities 91

Figure 22: Gantt Chart considering the resource replenishment according to Policy 2 with
maintenance activities.. 92
Figure 23: Resource availability over time for Policy 2 with maintenance activities 92
Figure 24: Gantt Chart considering the resource replenishment according to Policy 2 with
maintenance activities.. 93
Figure 25: Resource availability over time for Policy 3 without maintenance activities 93

Figure 26: Gantt Chart considering the resource replenishment according to Policy 3 without
maintenance activities.. 94
Figure 27: Resource availability over time for Policy 3 with maintenance activities 94
Figure 28: Gantt Chart considering the resource replenishment according to Policy 3 with
maintenance activities.. 95

Figure 29: Gantt Chart of the production schedule without maintenance activities 96
Figure 30: Gantt Chart of the production schedule based on maintenance event 1 97
Figure 31: Gantt Chart of the production schedule based on maintenance event 2 97
Figure 32: Gantt Chart of the production schedule based on maintenance event 3 98

D5.2 Robust and energy-aware planning and scheduling V1.0

10

List of Tables

Table 1. List of sets .. 34

Table 2. List of constants ... 34
Table 3. List of variables .. 35
Table 4: Model Parameters .. 45
Table 5: Decision Variables ... 45
Table 6: Random Instance for Lemma 4.2.2. Table on the left shows the processing times,
while tables on the right show setup times. .. 47
Table 7: Experiments on LB ... 57
Table 8: Benchmark Experiments of GHA ... 57
Table 9: Benchmark Results of LBBD for Weaving Scheduling - Makespan 58
Table 10: Results for Weaving Scheduling – Tardiness on benchmark instances 59

Table 11: Results for Weaving Scheduling – Makespan on real data 60

Table 12: Results for Weaving Scheduling – Tardiness on real data 61

Table 13: Improvements of R vs M under different criteria .. 62
Table 14: Example Instance .. 64
Table 15: Instances' solution times 1 ... 76
Table 16: Literature review for integrated shop scheduling and maintenance planning 82

Table 17: Fattahi Dataset with Resource Constraints (1 Resource + Hierarchical objectives
Cmax | Ft) .. 86
Table 18: Results on small and large scale Flexible Job Shop Scheduling Problems 87

Table 19: Impact of maintenance activities for different replenishment policies 96
Table 20: Impact of different line maintenance events on the completion time of the schedule
 ... 98

D5.2 Robust and energy-aware planning and scheduling V1.0

11

1. Introduction

1.1 Purpose and Scope

WP5 is responsible for the provision of the optimization for the FACTLOG project. To this
end, T5.2 Robust Energy-Aware production scheduling and T5.3 Resource-aware
production planning, develop and provide resource-aware algorithms for advanced
scheduling of production that support decision-making in the context of the pilots. In these
tasks, the enhancement of the developed optimization algorithms takes place in all cases in
order to further extend the capabilities of the Optimization engine taking under consideration
textbook and state-of-the-art solution approaches. This deliverable thus reports on the
former aspects reflecting the work performed in the two tasks and in the direction of the
completion of the Optimization Toolkit.

1.2 Relation with other Deliverables

This deliverable is directly related with two deliverables. Initially it receives information from
the D5.1 Real-time re-optimization which constitutes its predecessor having the initial
examination of the cases as well as the initial approach of the MILPs. The second with a
direct relationship is D5.3 FACTLOG optimization toolkit and service where the complete
implementation of the overall toolkit will be presented. As this deliverable relates to the
overall optimization in the FACTLOG project it also relates with deliverables as “D3.4
Proactive Cognitive Plants”, “D6.2 Data Collection Framework (Final Version)” and “D6.6
Integrated Package and Platform (Final Version)” and remaining deliverables and
milestones feeding in for Optimization.

1.3 Structure of the Document

As this deliverable constitutes the evolution of the D5.1 Real-time re-optimization, it follows
a similar structure where Section 2 presents the Optimization Module Update, and from then
on, the sections document the work done on each pilot in terms of optimization. Specifically,
it presents (a) additional background as the project and optimization work progresses, (b)
the contribution and progress conducted, (c) updates on the problem, (d) updates of the
solution approach, (e) evaluation – results and lastly the respective references. This
presentation flow appears in Section 3 regarding the TUPRAS optimization, in Section 4 on
the PIACENZA case, in Section 5 concerning the BRC case and in Section 6 presenting the
CONTINENTAL case.

D5.2 Robust and energy-aware planning and scheduling V1.0

12

2. Optimization-As-a-Service

In this section we describe the optimization module developed and deployed in the
framework of this project. Hereafter, we will refer to this module as optEngine.

OptEngine works as a shell around the optimization services build for the purposes of this
project. Its architecture follows an asynchronous approach and is agnostic to optimization-
specific data requirements. That is, optEngine receives, stores and forwards the optimization
data to the optimization service requested by the end-user. The structure of this section
goes as follows: in Section 2.1 we provide a detailed description of optEngine’s architecture;
in Section 2.2 we provide optEngine’s technology stack; in Section 2.3 we provide a
detailed documentation of optEngine’s web Application Programming Interface (API) with
which the end-user interacts.

2.1 Functional Requirements

The use cases of this shell are listed below:

• Use Case 1 (UC1): Authenticate user.

• Use Case 2 (UC2): List the available optimization services.

• Use Case 3 (UC3): Submit a new optimization job.

• Use Case 4 (UC4): Get the status and progress of an optimization job.

• Use Case 5 (UC5): Cancel an ongoing optimization job.

• Use Case 6 (UC6): Get the solution of a complete optimization job.

• Use Case 7 (UC7): Store a new operational model.

• Use Case 8 (UC8): Store a new operational scenario.

• Use Case 9 (UC9): Store the solution of a complete optimization job.

The image below illustrates the set of these functional requirements:

D5.2 Robust and energy-aware planning and scheduling V1.0

13

Figure 1. optEng Functional Requirements

Use Case 1 Authenticate user.

Brief description This use case states the actions taken to authenticate a user.

Primary Actors User

Pre-conditions The user is registered to optEngine.

Post-conditions The user is authenticated.

Basic flows Tasks Information required

1. User includes the base64-encoded
username:password combination to every action.

Username, password

2. The system authenticates the user.

Alternative flows Tasks Information required

1. If an error occurs, the system returns the respective
error code.

Error_code

D5.2 Robust and energy-aware planning and scheduling V1.0

14

Use Case 2 List the available optimization services.

Brief description This use case states the actions taken in order to list the available optimization services.

Primary Actors User

Pre-conditions The user is registered and authenticated.

Post-conditions The user receives a list with the available optimization services.

Basic flows Tasks Information required

1. User requests the list with the available optimization
services.

2. The system returns the available optimization services Route_ids

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 3 Submit a new optimization job.

Brief description This use case states the actions taken to submit a new optimization job.

Primary Actors User

Pre-conditions The user is registered and authenticated.

Post-conditions The user receives a unique identifier, the status, and the progress of the submitted
optimization job.

Basic flows Tasks Information required

1. User submits the optimization data along with the
optimization service route id.

Optimization_data,
operational_scenario_uuid,
route_id

2. The system forwards the submitted optimization job to
the respective optimization service.

Optimization_data,
route_id

3. The system returns the unique identifier, the status
and progress of the submitted job.

Uuid, status, progress

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

D5.2 Robust and energy-aware planning and scheduling V1.0

15

Use Case 4 Get the status and progress of an optimization job.

Brief description This use case states the actions taken to retrieve, the status and progress of a submitted
optimization job.

Primary Actors User

Pre-conditions The user is registered and authenticated.

The user has submitted an optimization job.

Post-conditions The user receives unique identifier and the status of the submitted optimization job.

Basic flows Tasks Information required

1. User submits the unique identifier of the optimization
job.

uuid

2. The system returns the unique identifier, the status and
progress of the submitted job.

Uuid, status, progress

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 5 Cancel an ongoing optimization job.

Brief description This use case states the actions taken to cancel an ongoing optimization job.

Primary Actors User

Pre-conditions The user is registered and authenticated.

The user has submitted an optimization job.

The optimization job is not finished yet.

Post-conditions The user receives unique identifier and the status of the submitted optimization job.

Basic flows Tasks Information required

1. User submits the unique identifier of the optimization
job.

uuid

2. The system returns the unique identifier, the status
and progress of the submitted job.

Uuid, status, progress

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

D5.2 Robust and energy-aware planning and scheduling V1.0

16

Use Case 6 Get the solution of a complete optimization job.

Brief description This use case states the actions taken to get the solution of a submitted optimization
job

Primary Actors User

Pre-conditions The user is registered and authenticated.

The user has submitted an optimization job.

The optimization job is successfully completed.

Post-conditions The user receives unique identifier and the solution data.

Basic flows Tasks Information required

1. User submits the unique identifier of the optimization
job.

uuid

2. The system returns the unique identifier and the solution
data of the submitted job.

Uuid, solution_data

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 7 Store a new operational model.

Brief description This use case states the actions taken to store a new operational model.

Primary Actors User

Pre-conditions

Post-conditions The operational model data is successfully stored.

Basic flows Tasks Information required

1. The User submits the operational model data. operational_model

2. The system stores the model. Uuid, operational_model

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 8 Store a new operational scenario.

Brief description This use case states the actions taken to store a new operational scenario.

D5.2 Robust and energy-aware planning and scheduling V1.0

17

Primary Actors User

Pre-conditions An operational model is already stored.

Post-conditions The operational scenario data is successfully stored.

Basic flows Tasks Information required

1. The User submits the operational scenario data. operational_scenario

2. The system stores the scenario. Model_uuid,
operational_scenario

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 9 Store the solution of a complete optimization job.

Brief description This use case states the actions taken to store the solution of a complete optimization
job

Primary Actors Optimization Services

Pre-conditions The user has submitted an optimization job.

The optimization job is successfully completed.

Post-conditions The solution data is successfully stored.

Basic flows Tasks Information required

3. The Optimization Services submit the uuid and the
solution data.

Uuid, solution_data

4. The system stores the solution data and updates the
status of the optimization job to complete.

Uuid, solution_data,
status

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

The class diagram below depicts the data requirements of optEngine.

D5.2 Robust and energy-aware planning and scheduling V1.0

18

Figure 2. optEngine Data Requirements

OptEngine works as a shell around the optimization. Its architecture follows an
asynchronous approach and is agnostic to optimization-specific data requirements. That is,
optEngine receives, stores, and forwards the optimization data to the optimization service
requested by the end-user.

Optimization requests along with the respective data are received via a web API. This API
allows the actions described in the previous section. The communication with the API
requires authentication, is encrypted (https) and asynchronous, i.e., once an optimization
job is submitted, the callee does not wait for its completion.

Data stores within optEngine work in a twofold manner:

• Permanent storage via a database (db): this is where optimization requests and the
related data are permanently stored or retrieved and updated when necessary.

• Temporal storage via the use of queues: this is where optimization data is stored up
to the point where they get consumed by the optimization services that read these
queues.

Regarding the optimization data, both the db and the queues are data-agnostic following a
general json schema. This allows the storage, permanent and temporal, of different data
structures required from different optimization services.

The employed queues allow the asynchronous processing of an optimization job.
Additionally, by being durable they ensure that when optEngine or an optimization service
fails, the job along with data are available in the respective queue. This means that
optEngine, upon reception of a new optimization job, forwards it to the requested
optimization service via a queue. Each optimization service listens for a new optimization
job to a specific queue and writes status/progress updates to another queue. Last,
optEngine listens to (a) a queue for status/progress updates and (b) multiple queues for
optimization results.

D5.2 Robust and energy-aware planning and scheduling V1.0

19

The flow of data and the architectural approach of optEngine are depicted below.

Figure 3. optEngine data Flow

2.2 Technology Stack

The technologies used to develop optEngine are the following:

• Java 8

• Spring-boot 2.4.5

• Springdoc openAPI 1.5.2

• Hibernate 1.0.0

• PostgreSQL 11

• RabbitMQ 3.8.16

• Docker 18.09.7

Figure 4. optEngine data stack

D5.2 Robust and energy-aware planning and scheduling V1.0

20

2.3 Web API documentation

2.3.1 API calls documentation

Method GET

Path /route/list

Description Get the routes list.

Parameters Name Description

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 RoutesDTO Found the result of the optimization job with the
supplied uuid.

500 AdoptApiError An internal error has occurred.

Method POST

Path /opt/job

Description Submit a new optimization job.

Parameters Name Description

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Body JobSubmissionDTO

Responses Status Body Description

200 JobStatusDTO Successfully submitted new job.

400 AdoptApiError Invalid route or no data supplied.

500 AdoptApiError An internal error has occurred.

Method GET

Path /opt/job

Description Get the status of a submitted optimization job.

Parameters Name Description

D5.2 Robust and energy-aware planning and scheduling V1.0

21

Uuid The unique identifier of the optimization job.

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 JobStatusDTO Found the optimization job with the supplied uuid.

400 AdoptApiError Invalid/no optimization job uuid supplied.

404 AdoptApiError No optimization job with the supplied uuid found.

500 AdoptApiError An internal error has occurred.

Method DELETE

Path /opt/job

Description Kill a submitted optimization job.

Parameters Name Description

Uuid The unique identifier of the optimization job.

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 JobStatusDTO Optimization job with supplied uuid successfully
killed.

400 AdoptApiError Invalid/no optimization job uuid supplied.

404 AdoptApiError No optimization job with the supplied uuid found.

500 AdoptApiError An internal error has occurred.

Method GET

Path /opt/job/result

Description Get the result of a completed optimization job.

Parameters Name Description

Uuid The unique identifier of the optimization job.

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

D5.2 Robust and energy-aware planning and scheduling V1.0

22

Responses Status Body Description

200 JobResultDTO Found the result of the optimization job with the
supplied uuid.

400 AdoptApiError Invalid/no optimization job uuid supplied.

404 AdoptApiError No result found for the specified optimization job
uuid.

500 AdoptApiError An internal error has occurred.

Method POST

Path /conf/model

Description Submit a new operational model.

Parameters Name Description

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Body ModelSubmissionDTO

Responses Status Body Description

200 JobStatusDTO Successfully submitted new model.

400 AdoptApiError Invalid route or no data supplied.

500 AdoptApiError An internal error has occurred.

Method POST

Path /conf/scenario

Description Submit a new operational scenario.

Parameters Name Description

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Body OperationalScenarioSubmissionDTO

Responses Status Body Description

200 JobStatusDTO Successfully submitted new scenario.

400 AdoptApiError Invalid route or no data supplied.

500 AdoptApiError An internal error has occurred.

D5.2 Robust and energy-aware planning and scheduling V1.0

23

2.3.2. JSON bodies description

Name RoutesDTO

Description Contains information about the available routes.

Attributes Name Description

uuid Unique identifier of the call.

routes The array with the available routes.

Example {

 "routes": [

 "string"

],

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150"

}

Name ModelSubmissionDTO

Description Contains information about the operational model.

Attributes Name Description

data The required data for the operational model. The schema is custom to
each type of model.

Example {

 "data": {

 "empty": true,

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

}

Name OperationalScenarioSubmissionDTO

Description Contains information about the operational scenario.

Attributes Name Attributes

Model_uuid Unique identifier of the call.

data The array with the available routes.

Example {

 "model_uuid":” c11dc261-d8a4-4174-897f-3864defee150”,

 "data": {

 "empty": true,

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

D5.2 Robust and energy-aware planning and scheduling V1.0

24

 }

}

Name JobSubmissionDTO

Description Contains information about the optimization job and is submitted to trigger the optimization
service.

Attributes Name Description

route Unique identifier of the optimization job category.

data The required data for the optimization job. The schema is custom to
each type of optimization job.

Example {

 "route": "max-flow",

 "data": {

 "empty": true,

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

}

Name JobStatusDTO

Description Contains information related to the status of the optimization job.

Attributes Name Description

submitted_at The submission date of the optimization job in millis.

progress The percentage (%) of optimization job progress.

uuid Unique identifier of the optimization job.

status The status of the optimization job. 0=PROCESSING, 1=COMPLETE,
2=FAILED, 3=KILLED.

Example {

 "model_uuid":” c11dc261-d8a4-4174-897f-3864defee150”,

 "submitted_at": 1623427969000,

 "progress": 67.5,

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150",

 "status": 0

}

Name JobResultDTO

Description Contains information about the solution of the optimization job.

Attributes Name Description

D5.2 Robust and energy-aware planning and scheduling V1.0

25

uuid Unique identifier of the optimization job.

produced_at The production date of the optimization result in millis.

data The required data for the optimization job. The schema is custom to
each type of optimization job.

Example {

 "data": {

 "empty": true,

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 },

 "produced_at": 1623427969000,

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150"

}

Name AdoptApiError

Description Contains information about API errors.

Attributes Name Description

path The URL.

message The error message.

uuid The unique identifier of the optimization job.

status The http status.

Example {

 "path": "/opt/job",

 "message": "Internal Server Error",

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150",

 "status": 500

}

D5.2 Robust and energy-aware planning and scheduling V1.0

26

3. Oil Refineries: Pilot Case by TUPRAS

3.1 Introduction

The production of off-specs LPG may lead to severe losses for refineries, since then the
LPG needs to be re-processed, resulting in reduced production efficiency and increased
energy costs. Hence, in this section, based on the analysis of the TUPRAS LPG purification
process, we present a mathematical programming approach to minimize the energy
consumed for planning on-specs LPG production. Specifically, we formulate the problem as
a Mixed Integer Linear Program (MILP) that integrates network flow and blending constraints
to identify the most energy efficient combination of configurations for all process units of the
LPG purification process to achieve on-specs LPG production. To the best of our knowledge,
this is the first approach that examines this process as a whole and not just a process unit
individually.

The proposed approach can be utilized for recovering from an off-specs situation within a
given time horizon, once such a critical situation is identified by FACTLOG anomaly
detection, analytics and simulation modules; this is actually the use case that motivates the
TUPRAS pilot of FACTLOG. Most importantly, our approach is generic and hence can be
applied on any type of industrial process flow that incorporates blending, for which the final
product must comply with certain specifications.

Our approach is based upon modelling the different operating conditions (i.e., different levels
of temperature, pressure, reflow) of each process unit as corresponding operational
scenarios that result in a specific amount of impurity removal, LPG reduction and energy
consumed. Note that these operating conditions of each process unit correspond to values
that the process engineers can manipulate.

Hence, the Optimization module will be used within FACTLOG to calculate the optimal on-
specs recovery plan (i.e., the plan that minimizes energy consumption) by appropriately
selecting (and returning) the proper operational scenario for each process unit. This
operational scenario will correspond to a specific combination of operating conditions (e.g.,
temperature, pressure, reflow) for each process unit. Then, the process engineers will
manipulate these values (utilizing the corresponding Model Predictive Control (MPC) of the
process unit) to apply the changes to the process units of the LPG purification process.

Note that the discretization imposed by utilizing operational scenarios may lead to a huge
number of variables, thus affecting solution time. To handle this, a pre-processing step can
be utilized that removes scenarios dominated by others, i.e., those that remove less
impurities while consuming more energy. In this regard, we have proposed a two-steps
procedure in deliverable D5.1. We first calculate the convex hull of the operational scenarios
by employing the quickhull algorithm developed by Barber et al (1996) to identify the extreme
points, i.e., the extreme operational scenarios in the convex hull that includes all of them.
Next, we apply a technique that is based on dominance relationships to derive from the
extreme points of the convex hull only the dominant ones. These (reduced) operational
scenarios are then introduced in the MILP model. This procedure enables us to examine the
different combinations of operating conditions in a detailed manner, without affecting much
the overall performance of the Optimization module

D5.2 Robust and energy-aware planning and scheduling V1.0

27

Note that we have explored this issue computationally in deliverable D5.1, and have shown
that by removing dominated operational scenarios, we can substantially reduce the solution
space and hence the corresponding solution time for our MILP. Hence, such a computational
study is not included in the current deliverable. However, in D5.1 we have also discussed
the application of Data Envelopment Analysis assessment (Charnes et al, 1978) for
removing dominated operational scenarios. Therefore, we explore this notion in this
deliverable.

Further, we extend our approach to account for uncertainty on the level of the input feeds of
the process. These values may be unknown, e.g., due to lack of corresponding sensors. We
address the uncertainty on the input flow rates (LPG with impurities) by handling them as
variables in specific intervals, instead of a constant. On the other hand, we address the
uncertainty on the level of impurities in the input feeds by formulating the corresponding
constraints as chance constraints. This also enables us to handle the natural variability
inherent in the impurity levels of the input feed.

To obtain the operational scenarios for each process unit, we will utilize the work that is
being implemented for FACTLOG in creating Machine Learning models that model the
behaviour of the process units (in terms of impurity removal and energy consumption) and
their integration with the Simulation module. In this manner, we fully utilize the interplay
between the different modules of FACTLOG.

Moreover, we have revised our API calls to enable the easy configuration of the Optimization
module with respect to the production schema and the corresponding operational scenarios.
This is important, since it enables the real-time reconfiguration of the Optimization module
with the corresponding operational scenarios that depict the current state of each one of the
process units, leading to a state-aware optimization of the LPG purification process.

With respect to deliverable D5.1, this deliverable (D5.2) offers a more detailed presentation
of the LPG purification process as well as a more detailed and deeper examination of the
corresponding literature, also including newly introduced approaches, such as Chance
Constrained Programming. Moreover, it provides a refined, simplified and crisper version of
our proposed MILP model and explains how this model can be extended to handle multiple
impurities or more complex flow networks. Further, it explores the use of Data Envelopment
Analysis in reducing the number of operational scenarios and hence the solution space.
Moreover, it explores uncertainty in the level of impurities in the input feed as well as
handling the input feed rate. Finally, it proposes the concept of state-aware optimization and
explains how this can be implemented by taking advantage of the functionalities that other
FACTLOG modules offer.

The remainder of Section 3 is organized as follows. Section 3.2 provides background
information on the LPG purification process. Section 3.3 presents related literature. Section
3.4 elaborates on our proposed MILP. More specifically, Section 3.4.1 presents our
modelling approach. Section 3.4.2 presents a MILP that incorporates flow and blending
constraints to minimize energy consumption while satisfying the corresponding flow,
blending and specification constraints. Section 3.4.3 explains how Data Envelopment
Analysis can be utilized to reduce the number of operational scenarios. Section 3.5
discusses how we deal with uncertainty on input flow rates. Specifically, the input feed rates
of the LPG purification process are considered as variables that receive values in specific
intervals (Section 3.5.1), while Chance Constrained Programming (Section 3.5.2) can be

D5.2 Robust and energy-aware planning and scheduling V1.0

28

utilized to handle uncertainty with respect to the level of impurities in the input feed. Section
3.6 presents how the concept of state-aware optimization will be implemented within
FACTLOG. Finally, Section 3.7 contains the reference list.

3.2 The LPG purification process

Liquified Petroleum Gas (LPG) is a fuel produced as a by-product of various oil refinery
processes. The LPG produced by these processes may contain impurities, i.e., Ethane and
Naphtha as well as Sulphur compounds. LPG must adhere to certain specifications with
respect to the level of these impurities. These may differ for different markets, seasons or
applications. Indicative LPG specifications may be 0.5% mol/mol Ethane (i.e., C2), 2%
mol/mol Naphtha (i.e., C5 and above) and 50 mg/kg Sulphur as well as specifications for
total C2 and C5 content.

Hence, LPG is further processed (i.e., purified) so that the final LPG product meets certain
quality specifications with respect to the proportion of impurities within it. In this regard, the
purification process of LPG (Bahadori, 2014) involves a network of connected process units
of different types. Such units include debutanizers and deethanizers as well as units using
organic compounds such as diethanolamine (DEA) to withhold the corresponding
substances.

In particular, each input feed flows through a stream of successive process units that are
configured accordingly to remove certain impurities. Within this purification process, different
streams may be consolidated, in which case the corresponding LPG is blended before
entering the next process unit. At the end of the purification process, the LPG of all streams
is blended in a single tank. The final LPG product within that tank needs to adhere to the
abovementioned quality specifications. Note that, with respect to each process unit of the
purification process, different configurations (i.e., settings of temperature, pressure or
reflow) correspond to different levels of impurity removal as well as different levels of energy
consumption.

A flow network of a typical LPG purification process can be found in Figure 5; this network
flow is based upon the corresponding purification process of TUPRAS. The input feed (i.e.,
LPG containing impurities) comes from various sources, such as Crude Distillation Units
(CDU), Hydrocracking (HYC), Fluid Catalytic Cracking (FCC), Delayed Cocker Unit (DCU),
Maximum Quality Diesel (MQD) and Platformers. Initially, each input feed is treated to
remove carbon-based impurities (i.e., Ethane and Naphtha). Depending on the input feed,
this step may require processing from a debutanizer or from both a debutanizer and a
deethanizer. Next, the output may also be further processed by an LPG DEA unit to remove
Sulphur-based impurities like Hydrogen Sulphur (H2S) and Mercaptan (CH4S). At the final
stage of the process, all purified LPG flows are blended in the final LPG tank.

With respect to Figure 5, the three CDU input feeds (F1 to F3) are treated by three
corresponding debutanizer units (CDU-1 to CDU-3 debutanizers, respectively), whose
outputs are subsequently mixed and treated for the removal of Sulphur compounds in a
single unit (LPG DEA-1), before flowing in the final LPG tank. The input feeds coming from
FCC (F6), DCU (F7) and MQD (F8) processes (F6-f8) are treated in a similar manner in
separate streams, though. The HYC input feeds (F4-F5) are treated both by a debutanizer

D5.2 Robust and energy-aware planning and scheduling V1.0

29

and deethanizer unit (which may also be placed in reversed order) and then by LPG DEA
units. On the other hand, Platformer input feeds (F9-F10) are already processed for Sulphur
hence they are only treated by debutanizer units.

Note that the purification process may also be supported by a DEA regeneration unit, which
is used to regenerate the diethanolamine amin and collect Sulphur as well as a gas
compressor. Note that we have not included such process units in our presentation and the
subsequent analysis, as they are not directly involved in the actual purification process.
However, it is quite trivial to also account for such unit utilizing our proposed approach.

Figure 5: An example of a LPG purification process flow network

3.3 Related literature

Several challenges of the oil refining industry have been met by employing mathematical
programming. The optimal topology configuration of petroleum refineries based on MILP is
determined in Albahri et al. (2018). Concerning the energy management of refinery
operations, Iyer and Grossmann (1997) and Mete and Turkay (2018) employ MILP to derive
the optimum combinations of the equipment that minimize the energy costs. Moreover,
planning and scheduling issues concerning the petroleum supply network of typical
refineries are addressed by utilizing MILP in Kuo and Chang (2008). Pinto and Moro (2000)
develop a MILP model to generate a schedule for LPG refinery management to optimize the

D5.2 Robust and energy-aware planning and scheduling V1.0

30

selection of storage facilities that are used to receive these products and to feed the product
pipeline. Almeida Neto et al. (2000) study a debutanizer unit from the gasoline stream
producing LPG, by incorporating linear models to Model Predictive Control (MPC). A MPC
for a crude oil preheat and distillation column of a crude oil unit is presented in Kemaloglu
et al. (2009). The use of simplified empirical nonlinear process models for CDU and FCC
units and accordingly for refinery planning is proposed in Li et al. (2005). In addition, several
studies are devoted to the maximization of the production of LPG specifically in the FCC
unit. Such studies are based on non-linear optimization models to accommodate the
operation of the corresponding MPC, e.g., (de Gouvea and Odloak, 1998; Zanin et al., 2000
and Zanin et al., 2002). Vasconcelos et al. (2005) resort to sequential quadratic
programming for the maximization of the LPG and gasoline profit.

A critical review of Natural Gas Liquid (NGL) recovery processes is conducted by Qyyum et
al. (2022). The NGL recovery and maximization of plant profitability is formulated as a mixed
integer nonlinear programming optimization problem in Murali et al. (2020). The operating
conditions of the distillation columns, such as pressure and temperature of feed gas, are
considered as decision variables, while the specifications for product impurities are used as
constraints in the optimization problem. Nonlinear programming is employed in de Almeida
Franco et al. (2020) to minimize the energy consumption for natural gas recovery by meeting
safety and quality specifications. The hydrodesulfurization of LPG feedstock by minimizing
the energy costs is performed via nonlinear programming in Safari and Vesali-Nase (2019).

Our approach also considers the operating conditions (e.g., temperature, pressure, etc.) of
the process units but not each one as a separate decision variable. Instead, it considers
them as a combination of operating conditions which may be selected or not, i.e., an
operational scenario that removes a specific percentage of impurities and consumes a
specific amount of energy. Hence, we address the nonlinearity introduced by temperature,
pressure etc. via a binary decision on whether to apply a specific operational scenario or
not.

In this regard, our approach follows a different direction. It offers an operational model of the
whole LPG purification process, incorporating the way each process unit operates with the
structure of the whole flow network and blending constraints for the corresponding quality
specifications.

Since the number of processing units is pre-set (according to the LPG production schema
of the refinery), the higher the number of the operational scenarios that will be generated
the higher the number of variables in our MILP. Thus, in a pre-processing step we reduce
the number of operational scenarios by applying Data Envelopment Analysis. In particular,
each scenario is viewed as entity under evaluation. Data Envelopment Analysis has been
already applied in the context of refineries. The performance of Chinese ethylene production
plants is assessed by this method in Han and Geng (2014) and Han et al. (2015). Martin et
al. (2016) utilized Data Envelopment Analysis to identify the most sustainable options for a
system by considering economic, environmental and social indicators. Their approach is
applied to a real case for screening the alternative technologies of electricity generation.
Han et al. (2016) proposed an approach for selecting optimal temperature of ethylene
cracking furnaces in petrochemical industry. They employed Data Envelopment Analysis to
evaluate the operation conditions of ethylene cracking process for different temperature
levels. The operation parameters used are the ethylene, propylene, hydrogen, methane,
butylene and butane, which considered as outputs, while as input is considered the

D5.2 Robust and energy-aware planning and scheduling V1.0

31

feedstock flow. Gonzalez-Garay and Guillén-Gosálbez (2018) incorporated Data
Envelopment Analysis in their framework for designing sustainable chemical processes. The
method is used for ranking and filtering the process designs obtained as solutions from multi-
objective optimization. Their framework is illustrated on the production of methanol from CO2
and hydrogen. Arabi et al. (2019) employed Data Envelopment Analysis in the context of
algae-based biofuel supply chain network to rank the Iranian cities of microalgal harvesting.
Dalei and Joshi (2020) used the method for the assessment of Indian oil refineries. Gong et
al. (2017a) and (2017b) evaluated different operating conditions in ethylene production
process. The operating conditions include the ethylene yield as output while as inputs the
fuel gas, high pressure steam, electricity, N2, compressing gas, recycled water, industrial
water and desalted water.

In our approach we account for uncertainty in input feed rates. As the inflow rates (LPG with
impurities) are inaccurate, we estimate the bounded intervals in which each of them lies. A
common approach to handle interval uncertainties is Interval Linear Programming, see
Charnes et al. (1977) and Chinneck and Ramadan (2000). However, we employ a different
approach proposed by Despotis and Smirlis (2002) to treat each inflow rate as a variable
that lies within a bounded interval. In this way, we also provide each unit with the flexibility
to determine the optimal level of the inflow rate for the operational scenarios given.

The uncertainty in the input feed impurities is handled by employing Chance Constrained
Programming (CCP). CCP has been widely utilized to solve optimization problems under
uncertainty. The constraints with stochastic parameters are formulated probabilistically, in
the sense that they should be satisfied with a given probability level. CCP was originally
introduced in Charnes and Cooper (1959) for single chance constraints, i.e., chance
constraints that should be probabilistically satisfied individually. A variant that
accommodates joint constraints is proposed by Miller and Wagner (1965). These chance
constraints should be probabilistically satisfied jointly, given a single probability level.

Contrary to conventional optimization problems there is not any general method for solving
CCP problems. The strategy is to transform the chance constraints to deterministic ones.
This entails the calculation of the prescribed probability. However, the probability distribution
may be unknown, or difficulties may arise on calculating probabilities because of multi-
dimensional integration. Thus, the solution method for CCP problems depends on i) the form
of the probabilistic constraints (joint or individual), ii) the distributions of the random
parameters and iii) the nature of the constraints (linear, convex, etc.). Theoretical and
computational aspects of CCP can be found in (Prekopa, 1995 and Ruszczynski and
Shapiro, 2003).

A comprehensive summary of theoretical developments and practical applications of CCP
in the process industries is provided in Li et al. (2008). CCP has been already applied to
refinery planning, for instance to estimate the expectation of plant revenues in Li et al.
(2004). A literature review of refinery planning models that deal with uncertainty can be
found in Leiras et al. (2011). Probabilistic constraints are used in Henrion and Möller (2003)
to extract feed from the tank of a continuous distillation process in which the rate of inflows
is unknown. Also, CCP was applied to the problem of a distillation process that separates
methanol-water mixture under uncertain inflows in Li et al. (2002). A CCP approach to
handle the uncertainty in feed flow rate of a gas processing plant and maximize the overall
profit is proposed in Mesfin and Shuhaimi (2010). The proposed approach was extended in
(Getu et al., 2012; 2013) to incorporate the uncertainty effect from the plant outlet side. This

D5.2 Robust and energy-aware planning and scheduling V1.0

32

approach was also applied in Getu et al. (2015) to examine six different process schemes
for NGL recovery using feed conditions such as temperature, pressure, flowrate, etc. A MILP
is developed in (Al-Qahtani and Elkamel, 2008) to examine the process network integration
alternatives in a multisite petroleum refinery system with the aim to minimize the total cost.
This model is extended in (Al-Qahtani and Elkamel, 2010) to consider uncertainty in raw
materials and final product prices as well as products demand. The parameters with
uncertainty are raw materials, product prices, and market demand. (Salas et al., 2021)
proposed a multi-objective framework for determining the optimal operating conditions of an
NGL recovery unit. The two objectives are the annual profitability of the unit and the
concentration of methane in the NGL product stream. The market uncertainty of the prices
of the products and the costs of raw materials is also incorporated in the model.

We utilize CCP to extend our proposed MILP to handle the uncertainty that permeates the
inflows in terms of the impurities included within LPG entering the purification process. In
this regard, we model these parameters as random variables and employ CCP to
incorporate them into our MILP to obtain solutions within a specific probability level.

3.4 MILP for on-specs LPG production and recovery

3.4.1 Modelling approach

A key issue for our proposed approach lies in the way we handle the operating conditions
of each process unit. Each process unit is modelled as a process that transforms inputs into
outputs. In this regard, the operating conditions of each process unit (e.g., temperature,
pressure, etc.) constitute the inputs, while the resulting reduced LPG flow, removed
impurities and energy consumed constitute the outputs. The mapping of all possible inputs
to their corresponding outputs for a specific process unit constitute its operational scenarios.
That is, each operational scenario is fully specified by (i) the operating conditions of the
process unit (pressure, temperature, etc.), (ii) the reduction in the flow rate of LPG and
impurities of outputs from the unit (products) and (iii) the corresponding energy consumption.

Hence, we have a specific operational scenario for each combination of operating conditions
of a given process unit. For instance, a debutanizer receives a specific feed and applies
temperature as well as pressure to remove impurities, i.e., C2 (and lighter by-products) from
the top and C5 (and heavier by-products) from the bottom. The different operating conditions
that may be applied (e.g., higher/lower temperature with different levels of pressure) result
in different outcomes (level of LPG reduction and impurities removed) and accordingly to
different energy consumption levels.

Higher energy consumption leads to larger impurity removal, hence on-specs production
requires more energy. However, the optimal quantity of energy required and the
corresponding operating conditions are unknown. Therefore, we build our MILP model with
the aim to minimize energy consumption while satisfying the production specifications of
LPG and by incorporating the operational scenarios of each process unit.

We model the LPG purification process via a MILP model, based on a typical flow and
blending modelling approach that also incorporates a binary decision variable for each
operational scenario of each process unit. In this manner, for each unit, the optimization
module selects whether a specific operational scenario is applied or not. Thus, the proposed

D5.2 Robust and energy-aware planning and scheduling V1.0

33

model determines collectively the optimal combination of settings for all process units by
directly selecting the optimal operational scenarios for each one of them.

These operational scenarios can be created using either a model- or a data-driven
approach. In the former, a physical model of the process transformation is used to simulate
the different levels of impurity removal and energy consumption for each combination of
operating conditions. In the latter, a Machine Learning model can be utilized, provided that
the corresponding sensor data is available Rožanec et al. (2021).

Note that this modelling approach has enabled us to avoid directly incorporating
temperature, pressure, etc. and their relation to impurity removal and energy consumption
as variables in the model, and hence to avoid introducing the nonlinear relationships that
these impose. That is, we have removed the nonlinearity from the model in a rather intuitive
manner, by introducing binary decision variables (based on the operational scenarios) that
model the actual decisions that a control/process engineer needs to take when planning for
on-specs LPG production, i.e., how to change the operating conditions of each process unit.

3.4.2 The proposed MILP

In what follows, we provide the notation of the sets, constants and variables that are
employed in our proposed MILP. The quantities are measured in m3, the time intervals in
hours flow rates in m3/hour and energy consumption rate in kJ/hour. The input feeds are
assumed stable for the whole period. For simplicity of presentation, we present our model
with only one impurity (i.e., C2). The extension of this model to multiple impurities is
discussed in the end of this subsection.

Let us now formally define our model. To enable easier understanding, sets and constants
are provided with capital letters, variables with small ones.

Consider the flow network 𝐺(𝑉, 𝐸), portrayed in Errore. L'origine riferimento non è stata
trovata., in which each input feed (𝑉𝑖𝑛), process unit (𝑉𝑝𝑟) and output tank (𝑉𝑜𝑢𝑡) is a node

𝑖 ∈ 𝑉 = 𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐 ∪ 𝑉𝑜𝑢𝑡, and any connection between two such nodes is an edge (𝑖, 𝑗) ∈ 𝐸.

For simplicity of exposition, we assume that any path in 𝐺 starts from a node in 𝑉𝑖𝑛 and ends
with a node in 𝑉𝑜𝑢𝑡. Let 𝐶𝐴𝑃𝑖𝑗 denote the flow rate capacity of (𝑖, 𝑗) ∈ 𝐸, 𝑁𝑖

− the set of nodes

to which 𝑖 sends flow (i.e., 𝑗 ∈ 𝑁𝑖
−: (𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐), and 𝑁𝑖

+the set of nodes from

which 𝑖 receives flow (i.e., 𝑘 ∈ 𝑁𝑖
+: (𝑘, 𝑖) ∈ 𝐸, 𝑖 ∈ 𝑉𝑜𝑢𝑡 ∪ 𝑉𝑝𝑟𝑜𝑐).

With respect to input feeds, each node 𝑖 ∈ 𝑉𝑖𝑛 has a given input flow rate 𝐼𝐹𝑖 which also
contains a flow rate 𝐼𝐶2𝑖 of impurity C2 (this may be provided as a percentage of 𝐼𝐹𝑖 but can

be easily converted to flow rate). With respect to the output tank(s), for each node 𝑖 ∈ 𝑉𝑜𝑢𝑡,

let 𝑄𝑖
𝑡𝑜𝑡𝑎𝑙 be the total capacity of that tank, 𝑄𝑖

𝑠𝑡𝑎𝑟𝑡 the quantity of the tank at the start of the

purification process and 𝑄𝐶2𝑖
𝑠𝑡𝑎𝑟𝑡 the quantity of C2 within that tank (again, this may be

provided as a percentage of 𝑄𝑖
𝑠𝑡𝑎𝑟𝑡 but can be easily converted to quantity).

With respect to process units, each node 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 is associated with a set of operational

scenarios 𝑆𝑖. Each 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐, using 𝑠 ∈ 𝑆𝑖, is associated with the corresponding energy

consumption rate 𝐸𝑖
𝑠. Also, let 𝑃𝐹𝑖𝑗

𝑠 be the percentage of total flow rate that 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 sends

to 𝑗 ∈ 𝑁𝑖
− under 𝑠 ∈ 𝑆𝑖. Hence, 1 − 𝑃𝐹𝑖𝑗

𝑠 corresponds to the percentage flow rate removed by

D5.2 Robust and energy-aware planning and scheduling V1.0

34

the purification process from the stream leading to the final LPG tank. In a similar fashion,
let 𝑃𝐶2𝑖𝑗

𝑠 be the percentage of C2 flow rate that 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 sends to 𝑗 ∈ 𝑁𝑖
− under 𝑠 ∈ 𝑆𝑖. In this

regard, 𝑃𝐶2𝑖𝑗
𝑠 = 100% would mean that no C2 is removed from the LPG, while 𝑃𝐶2𝑖𝑗

𝑠 = 0%

would mean that all C2 is removed from the LPG.

Further, let 𝐻 be the time horizon for which LPG production needs to be scheduled and 𝑆𝑃𝐶2
the percentage specification for C2, i.e., the maximum allowed percentage of C2 in the final
tank, in order for the LPG to be on-specs.

Let us now define the corresponding variables. With respect to process unit 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 running

operational scenario 𝑠 ∈ 𝑆𝑖, let 𝑥𝑖
𝑠 ∈ {0,1} denote the decision variable that shows whether 𝑖

runs 𝑠 (𝑥𝑖
𝑠 = 1) or not (𝑥𝑖

𝑠 = 0). Accordingly, 𝑓𝑖𝑗
𝑠 ∈ R denotes the total flow rate of 𝑖 ∈

𝑉𝑝𝑟𝑜𝑐 running 𝑠 ∈ 𝑆𝑖 towards node j ∈ 𝑁𝑖
−. Moreover, 𝑓𝑖𝑗

∗ ∈ R denotes the total flow rate of 𝑖 ∈

𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐 towards node j ∈ 𝑁𝑖
−. Hence, for input feed 𝑖 ∈ 𝑉𝑖𝑛, 𝑓𝑖𝑗

∗ equals the total flow rated

of that input feed, while for process unit 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐, 𝑓𝑖𝑗
∗ equals the total flow rate of the chosen

operational scenario for that process unit. In a similar fashion, 𝑓𝐶2𝑖𝑗
𝑠 ∈ R denotes the C2 flow

rate of 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 running 𝑠 ∈ 𝑆𝑖 towards node j ∈ 𝑁𝑖
− and 𝑓𝑖𝑗

∗ ∈ R the total flow rate of 𝑖 ∈

𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐 towards node j ∈ 𝑁𝑖
−. Finally, let 𝑞𝑖 ∈ R be the quantity of LPG in the final tank

𝑖 ∈ 𝑉𝑜𝑢𝑡 at the end of time horizon 𝐻 and 𝑞𝐶2𝑖 ∈ R be the quantity of C2 in the final tank 𝑖 ∈
𝑉𝑜𝑢𝑡 at the end of time horizon 𝐻.

Note that for convenience, all notation is also provided in Table 1 (sets), Table 2 (constants)
and Table 3 (variables).

Table 1. List of sets

𝑉𝑖𝑛 Set of nodes corresponding to input feeds

𝑉𝑝𝑟𝑜𝑐 Set of nodes corresponding to process units

𝑉𝑜𝑢𝑡 Set of nodes corresponding to output tanks

𝑁𝑖
− Set of nodes to which 𝑖 sends flow, 𝑖 ∈ 𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐

𝑁𝑖
+ Set of nodes from which 𝑖 receives flow, 𝑖 ∈ 𝑉𝑜𝑢𝑡 ∪ 𝑉𝑝𝑟𝑜𝑐

𝑆𝑖 Set of operational scenarios for node 𝑖, ∀𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐

Table 2. List of constants

𝐻 Time horizon for recovery

𝑆𝑃𝐶2 Specifications (%) for C2 in final LPG tanks

𝐼𝐹𝑖 Total flow rate of 𝑖 ∈ 𝑉𝑖𝑛 (LPG with impurities)

𝐼𝐶2𝑖 Flow rate of C2 within LPG of 𝑖 ∈ 𝑉𝑖𝑛

𝐶𝐴𝑃𝑖𝑗 Capacity of flow rate 𝑖 ∈ 𝑉𝑝𝑟 can send to 𝑗 ∈ 𝑁𝑖
−

𝑄𝑖
𝑡𝑜𝑡𝑎𝑙 Total quantity capacity of LPG in 𝑖 ∈ 𝑉𝑜𝑢𝑡

𝑄𝑖
𝑠𝑡𝑎𝑟𝑡 Current quantity of LPG in 𝑖 ∈ 𝑉𝑜𝑢𝑡

𝑄𝐶2𝑖
𝑠𝑡𝑎𝑟𝑡 Current perc. of flow rate of C2 that 𝑖 ∈ 𝑉𝑝𝑟 sends to 𝑗 ∈ 𝑁𝑖

− under 𝑠 ∈ 𝑆𝑖 for a

time unit

𝐸𝑖
𝑠 Energy consumption rate of node 𝑖 ∈ 𝑉𝑝𝑟 using 𝑠 ∈ 𝑆𝑖 for a time unit

D5.2 Robust and energy-aware planning and scheduling V1.0

35

𝑃𝐹𝑖𝑗
𝑠 Perc. of total flow rate that 𝑖 ∈ 𝑉𝑝𝑟 sends to 𝑗 ∈ 𝑁𝑖

− under 𝑠 ∈ 𝑆𝑖 for a time unit

(the rest corresponds to removed impurities)

𝑃𝐶2𝑖𝑗
𝑠 Perc. of flow rate of C2 that 𝑖 ∈ 𝑉𝑝𝑟 sends to 𝑗 ∈ 𝑁𝑖

− under 𝑠 ∈ 𝑆𝑖 for a time unit

(1 − 𝑃𝐶2𝑖𝑗
𝑠 corresponds to removed impurities)

Table 3. List of variables

𝑥𝑖
𝑠 ∈ {0,1} Node 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 runs 𝑠 ∈ 𝑆𝑖 (𝑥𝑖

𝑠 = 1) or not (𝑥𝑖
𝑠 = 0)

𝑓𝑖𝑗
𝑠 ∈ 𝑅0

+ Total flow rate of 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 running operational scenario 𝑠 ∈ 𝑆𝑖 towards j ∈

𝑁𝑖
−.

𝑓𝑖𝑗
∗ ∈ 𝑅0

+ Total flow rate of 𝑖 ∈ 𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐 towards j ∈ 𝑁𝑖
−

𝑓𝐶2𝑖𝑗
𝑠 ∈ 𝑅0

+ C2 flow rate of 𝑖 ∈ 𝑉𝑝𝑟𝑜𝑐 running operational scenario 𝑠 ∈ 𝑆𝑖 towards j ∈ 𝑁𝑖
−.

𝑓𝐶2𝑖𝑗
∗ ∈ 𝑅0

+ C2 flow rate of 𝑖 ∈ 𝑉𝑖𝑛 ∪ 𝑉𝑝𝑟𝑜𝑐 towards j ∈ 𝑁𝑖
−

𝑞𝑖 ∈ 𝑅0
+ Quantity of LPG in 𝑖 ∈ 𝑉𝑜𝑢𝑡 at the end of time horizon 𝐻

𝑞𝐶2𝑖 ∈ 𝑅0
+ Quantity of C2 in 𝑖 ∈ 𝑉𝑜𝑢𝑡 at the end of time horizon 𝐻

The proposed MILP is provided below.

 min  ∑ ∑ 𝐻  ⋅ 𝐸𝑖
𝑠   ⋅ 𝑥𝑖

𝑠

s∈𝑆ii ∈𝑉𝑝𝑟𝑜𝑐

   

∑ 𝑥𝑖
𝑠

𝑠∈𝑆𝑖

=  1, ∀i ∈ V𝑝𝑟𝑜𝑐
(3.1)

𝑓𝑖𝑗
∗ = 𝐼𝐹𝑖, ∀i ∈ V𝑖𝑛, 𝑗 ∈ 𝑁𝑖

− (3.2)

𝑓𝑖𝑗
∗ = ∑ 𝑓𝑖𝑗

𝑠
𝑠∈𝑆𝑖

, ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑗 ∈ 𝑁𝑖
− (3.3)

𝑓𝑖𝑗
𝑠 ≤ 𝐶𝐴𝑃𝑖 ⋅ 𝑥𝑖

𝑠 , ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑠 ∈ 𝑆𝑖, 𝑗 ∈ 𝑁𝑖
− (3.4)

∑ 𝑓𝑘𝑖
∗

𝑘∈𝑁𝑖
+

= ∑
1

𝑃𝐹𝑖𝑗
𝑠

𝑠∈𝑆𝑖

⋅ 𝑓𝑖𝑗
𝑠 ,

∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑗 ∈ 𝑁𝑖
−

(3.5)

𝑞𝑖 = 𝑄𝑖
𝑠𝑡𝑎𝑟𝑡 + 𝐻 ⋅ ∑ 𝑓𝑘𝑖

∗
𝑘∈𝑁𝑖

+ , ∀i ∈ V𝑜𝑢𝑡 (3.6)

𝑞𝑖 ≤ 𝑄𝑖
𝑡𝑜𝑡𝑎𝑙, ∀i ∈ V𝑜𝑢𝑡 (3.7)

𝑓𝐶2𝑖𝑗
∗ ≥ 𝐼𝐶2𝑖, ∀i ∈ V𝑖𝑛, 𝑗 ∈ 𝑁𝑖

− (3.8)

𝑓𝐶2𝑖𝑗
∗ = ∑ 𝑓𝐶2𝑖𝑗

𝑠
𝑠∈𝑆𝑖

, ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑗 ∈ 𝑁𝑖
− (3.9)

𝑓𝐶2𝑖𝑗
𝑠 ≤ 𝑓𝑖𝑗

𝑠, ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑠 ∈ 𝑆𝑖, 𝑗 ∈ 𝑁𝑖
− (3.10)

∑ 𝑓𝐶2𝑘𝑖
∗

𝑘∈𝑁𝑖
+ = ∑

1

𝑃𝐶2𝑖𝑗
𝑠 𝑠∈𝑆𝑖

⋅ 𝑓𝑖𝑗
𝑠 , ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑗 ∈ 𝑁𝑖

− (3.11)

𝑞𝐶2𝑖 = 𝑄𝐶2𝑖
𝑠𝑡𝑎𝑟𝑡 + 𝐻 ⋅ ∑ 𝑓𝐶2𝑘𝑖

∗
𝑘∈𝑁𝑖

+ , ∀i ∈ V𝑜𝑢𝑡 (3.12)

D5.2 Robust and energy-aware planning and scheduling V1.0

36

𝑞𝐶2𝑖 ≤ 𝑆𝑃𝐶2 ⋅ 𝑞𝑖, ∀i ∈ V𝑜𝑢𝑡 (3.13)

𝑥𝑖
𝑠 ∈ {0,1}, ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑠 ∈ 𝑆𝑖 (3.14)

𝑓𝑖𝑗
𝑠 , 𝑓𝐶2𝑖𝑗

𝑠 ≥ 0, ∀i ∈ V𝑝𝑟𝑜𝑐 , 𝑠 ∈ 𝑆𝑖, 𝑗 ∈ 𝑁𝑖
− (3.15)

𝑓𝑖𝑗
∗ , 𝑓𝐶2𝑖𝑗

∗ ≥ 0, ∀i ∈ V𝑖𝑛 ∪ V𝑝𝑟𝑜𝑐 , 𝑗 ∈ 𝑁𝑖
− (3.16)

𝑞𝑖, 𝑞𝐶2𝑖 ≥ 0, ∀i ∈ V𝑜𝑢𝑡 (3.17)

The objective function minimizes total energy consumption given the operational scenario
selected for each process unit. By constraint (3.1), exactly one operational scenario is
selected for each process unit. Constraint (3.2) introduces the input feed to the subsequent
process unit. Constraint (3.3) models the flow rate of LPG from each process unit to the next
node (i.e., process unit or output tank). Note that this flow rate will be equal to flow rate of
the corresponding selected scenario, since the flow rate variable 𝑓𝑖𝑗

𝑠 for any operational

scenario not selected (i.e., for any 𝑥𝑖
𝑠=0) is pushed to 0 by constraint (3.4). The flow rate that

a process unit receives from its predecessors is calculated by constraints (3.5), reduced by
the reduction of flow at each predecessor node. At the end of the time horizon, the quantity
of LPG that is contained in the final LPG tank is calculated by constraint (3.6); this quantity
cannot exceed the capacity of the corresponding output tank(s), by constraint (3.7).

While constraint (1) handles the operational scenario selection and constraints (3.2)-(3.7)
the flow of LPG, constraints (3.8)-(3.13) handle C2 impurity removal of the purification
process. In this regard, constraints (3.8)-(3.12) are the C2 impurity flow counterparts of
constraints (3.2)-(3.6), while constraint (3.13) imposes the specification objective for C2 in
the final LPG tank(s). Note that the use of ‘≥’ in constraint (3.8), instead of an equality, does
not affect the final result, since the minimization objective function paired with constraint
(3.13) pushes constraint (3.8) to be satisfied as an equality. Constraints (3.14) and (3.15)-
(3.17) are binary and non-negativity constraints for the corresponding variables,
respectively.

In this section, we have presented a MILP for on-specs LPG production. The proposed
model (3.1)-(3.15) can be extended to handle multiple impurities. For example, to handle C5
constraints, we can include C5 variables (𝑓𝐶5𝑖𝑗

𝑠 , 𝑓𝐶5𝑖𝑗
∗ , 𝑞𝐶5𝑖) and add a set of corresponding

constraints similar to the ones for C2 (i.e., constraints (3.8)-(3.13)). Similarly, we could also
include Sulphur or any other impurity required. Moreover, to handle specifications on the
total amount of different types of impurities (e.g., total amount of C2 and C5 included, say
𝑆𝑃𝐶2+𝐶5), we can extend constraint (3.13) as follows:

𝑞𝐶2𝑖 + 𝑞𝐶5𝑖 ≤ 𝑆𝑃𝐶2+𝐶5 ⋅ 𝑞𝑖, ∀i ∈ V𝑜𝑢𝑡 (3.18)

Further, the process model that the Simulation tool is based upon and uses (and the
Optimization model consumes and utilizes) also includes a specific type of unit to unify flows,
namely junctions. For example, in Errore. L'origine riferimento non è stata trovata., the
flows that leave the three CDU debutanizers are blended before entering the corresponding
LPG DEA unit. This blending is done via a junction. To incorporate junctions within our
model, we consider them as process units, i.e., all junctions are considered as nodes
included in V𝑝𝑟𝑜𝑐. That is, we consider junctions to be process units. Then, it suffices to

define only one operational scenario for each such node (i.e., junction), one that does not

D5.2 Robust and energy-aware planning and scheduling V1.0

37

reduce LPG or impurities at all and does not consume any energy. Hence, for each junction

𝑖𝑗𝑢𝑛 ∈ V𝑝𝑟𝑜𝑐, we consider only one operational scenario, i.e., 𝑠 ∈ 𝑆𝑖𝑗𝑢𝑛
 such that |𝑆𝑖𝑗𝑢𝑛

| = 1,

for which 𝑥𝑖𝑗𝑢𝑛

𝑠 = 1, 𝑃𝐹𝑖𝑗𝑢𝑛𝑗
𝑠 = 1 and 𝑃𝐶2𝑖𝑗𝑢𝑛𝑗

𝑠 = 1 (and similarly for any other impurity,

signifying that no LPG or impurity is removed) and 𝐸𝑖𝑗𝑢𝑛

𝑠 = 0, since junctions do not consume

any energy.

Note that we have presented our approach in terms of on-specs LPG production. However,
our approach can be easily utilized once an off-specs situation has been identified. Our
model can then be used to provide a plan for on-specs recovery within a given time horizon
and with the minimum energy consumption. To do so, we only need to initialize our output
tank constants (i.e., the amount of LPG and corresponding impurities in the output LPG tank)
at the level they currently are, i.e., incorporating the off-specs impurity levels.

More importantly, our model is presented in a generic manner and thus can handle any
amount of input feeds or output tanks, and any flow network of process units that performs
a similar operation, removing impurities and blending different streams. Similarly, it can
handle different sources of uncertainty stemming from the input feed.

3.4.3 Removing operational scenarios via Data Envelopment Analysis

In deliverable D5.1, we have proposed a two-step pre-processing procedure for reducing
the number of operational scenarios and hence reducing the size of the MILP problem (i.e.,
the number of variables) and the solution space. This leads to important computational
savings and improvement of the time performance of the solution method. In our two-step
procedure, we first calculate the convex hull of the operational scenarios by employing the
quickhull algorithm (Barber et al 1996) to identify the extreme operational scenarios in the
convex hull that includes all of them. Next, we compare them based on dominance
relationships to derive only the dominant ones. These (reduced) operational scenarios are
then introduced in the MILP model. In this deliverable, we explore the use of Data
Envelopment Analysis (Despotis, 2005) for reducing the number of operational scenarios.

For this purpose, we consider operational scenarios as entities to be evaluated. Notice that
each operational scenario i includes five measures-criteria (fi1-fi5), i.e., the energy
consumption, the reduction rate of C2, the reduction rate of C5, the reduction rate of Sulphur
and the reduction rate of LPG. We use these values to create an aggregated measure for
each operational scenario, i.e., a score. In this regard, we employ a linear programming
approach, which is based on Data Envelopment Analysis, to derive the weights for the
aggregation. In particular, for each specific scenario i we calculate its score as the weighted
sum ℎ𝑖 = 𝑢𝑓𝑖, where 𝑓𝑖 = (𝑓𝑖1, 𝑓𝑖2, … , 𝑌𝑖5)𝛵 denotes the vector of the m values of the and 𝑢 =
(𝑢1, 𝑢2, … , 𝑢5) denotes the vector of the variables used as weights. A common weighting
scheme for the aggregation is obtained from the following model:

𝑚𝑖𝑛 ∑ 𝑑𝑖

|𝑽𝒊𝒏|

𝑖=1

 (3.19)

D5.2 Robust and energy-aware planning and scheduling V1.0

38

𝑠. 𝑡.

𝑢𝑓𝑖 + 𝑑𝑖 = 1, 𝑖 = 1, … , 𝑛

𝑢 ≥ 0, 𝑑𝑖 ≥ 0

We assume an upper bound for the score of each scenario i which is set to 1, i.e., 𝑢𝑓𝑖≤1. In

model (3.19) the deviations 𝑑𝑖 of the performances of all scenarios from the upper bound
are simultaneously minimized. As lower levels of energy consumption, LPG reduction, etc.
are desired, these criteria are modified accordingly to be appropriate for maximization. The
optimal solution of the linear model (3.19) provides an aggregation scheme as well as it
allows for ranking the scenarios. Our procedure may serve as a filter for the MILP model by
excluding the operational scenarios with ℎ𝑖 < 1. Hence, we can use this method by simply
creating and solving (via any Linear Programming solver) the corresponding linear model
(3.19) for the operational scenarios.

3.5. Handling input uncertainty

3.5.1 Handling uncertainty in the input feed rate

As noticed, there is uncertainty in the total input flow rate (LPG with impurities), feeds F1-
F10 in Figure 5. Hence, we do not consider the inflows rate as constants anymore. The
lower and upper bound that each inflow rate can vary are estimated or given by the analyst.
Now, the analyst instead of indicating a specific input flow rate for each unit, can safer
propose an interval that its value can vary. Following Despotis and Smirlis (2002), we
address this kind of uncertainty by expressing each inflow rate 𝐼𝐹𝑖 as a variable within the

bounded interval [𝐼𝐹𝑖
𝐿, 𝐼𝐹𝑖

𝑈]:

𝐼𝐹𝑖 = 𝐼𝐹𝑖
𝐿 + 𝛾(𝐼𝐹𝑖

𝑈 − 𝐼𝐹𝑖
𝐿), ∀i ∈ V𝑖𝑛, 𝑗 ∈ 𝑁𝑖

− (3.20)

The constraints (3.2) that incorporate the input flow rates are converted to the following
ones:

𝑓𝑖𝑗
∗ = 𝐼𝐹𝑖

𝐿 + 𝛾(𝐼𝐹𝑖
𝑈 − 𝐼𝐹𝑖

𝐿), ∀i ∈ V𝑖𝑛, 𝑗 ∈ 𝑁𝑖
− (3.21)

The new variable γ represents the additional input flow rate 𝐼𝐹𝑖 within the interval [𝐼𝐹𝑖
𝐿, 𝐼𝐹𝑖

𝑈].

The previous form of the proposed MILP is obtained when the lower and upper bounds

coincide (𝐼𝐹𝑖
𝐿 = 𝐼𝐹𝑖

𝑈).

The adopted approach enables us to examine fewer operating schemes concerning the
inflow rates. It is not required anymore to explicitly evaluate every different possible value of
the inflow rates as optimization provides their optimal values within a given range. In
addition, testing specific values for inflow rates may be restrictive and render the proposed
MILP infeasible. The model is more flexible to avoid such a situation with inflow rates being

D5.2 Robust and energy-aware planning and scheduling V1.0

39

variables. Finally, we grant the flexibility to each process unit i ∈ V𝑖𝑛 to decide the optimal
level of the inflow rate that accepts for the operational scenarios under evaluation.

3.5.2 Handling uncertainty in the input feed impurities

The amount of C2 within LPG in the input feed may be uncertain due to the natural variability
of the previous processes and the lack of sensors at the beginning of the purification
process. Thus, we may wish to treat each 𝐼𝐶2𝑖 as an uncertain parameter, i.e., a continuous
random variable. These uncertain parameters appear on the right-hand side of the linear
constraints (3.8) that correspond to the C2 input feeds. Thus, to take into account the
uncertainty, constraints (3.8) may be expressed in the following probabilistic form:

 𝑃{𝑓𝐶2𝑖𝑗
∗ ≥  𝐼𝐶2𝑖} ≥ 𝛼𝑖   , ∀ 𝑖 ∈ 𝑉𝑖𝑛, 𝑗  ∈ 𝑁𝑖

− (3.22)

Many single chance constraints can be individually incorporated into a problem (Birge,
1997). In this regard, each input flow 𝐼𝐶2𝑖 may stem from several independent sources. In
such case, the input flows are independent, and we can formulate an individual chance
constraint for each 𝐼𝐶2𝑖. Each chance constraint (3.22) requires the corresponding original
constraint in (3.8) to be satisfied within a prescribed probability. The probability that the
original constraint i will hold must be at least αi, with the desired confidence level 𝛼𝑖 ∈ (0,1]
defined by the user. Usually, 𝛼𝑖 is selected quite close to 1, as the higher 𝛼𝑖, the more reliable

the modeled LPG purification process. However, higher values of 𝛼𝑖 lead to shrinkage of the
feasible solution space (Henrion et al., 2001).

The underlying one-dimensional distribution of each random parameter 𝐼𝐶2𝑖 is required for
solving the MILP that incorporates the chance constraints. The individual chance constraints
(3.22) can be converted to equivalent deterministic ones by employing the cumulative

distribution function 𝛷𝑖
−1 of each random parameter 𝐼𝐶2𝑖:

 𝑓𝐶2𝑖𝑗
∗ ≥ 𝛷𝑖

−1(𝛼𝑖)   , ∀ 𝑖 ∈ 𝑉𝑖𝑛, 𝑗  ∈ 𝑁𝑖
− (3.23)

The α-quantile of each distribution 𝛷𝑖 is represented by 𝛷𝑖
−1(𝛼𝑖) in constraints (3.23), see

(Birge and Louveaux, 2011).

The distribution of each input flow rate 𝐼𝐶2𝑖 can be identified by historical data and through
sampling from the LPG process. However, if the input flow entering the purification process
of LPG is derived from the aggregation of many other independent flows stemming from
different sources, it can be assumed that each independent input flow rate 𝐼𝐶2𝑖 follows a
Normal distribution N(μi,σi), since the rate of the overall inflows in a continuous distillation
process may be considered as a Gaussian process (Henrion and Möller 2003). Then, for
each inflow rate 𝐼𝐶2𝑖 , the parameters of distribution N(μi,σi) can be estimated from historical
observations.

The probability for each constraint (3.23) to be satisfied is at least 𝛼𝑖 while it will be exactly
𝛼𝑖 if at optimality is satisfied with equality. Overall, the on-specs plan for LPG production will
be achievable if all constraints (3.23) are satisfied. Hence, as the input flow rates are

independent, the joint probability that all constraints (3.23) are satisfied is at least ∏ 𝛼𝑖
|𝑉𝑖𝑛|
𝑖=1 .

D5.2 Robust and energy-aware planning and scheduling V1.0

40

3.6 State-aware optimization

In this section, we explain how the FACTLOG approach can be utilized to enable state-
aware optimization of the on-specs LPG production or recovery process. In this regard, we
first explain how operational scenarios are produced for each process unit and then present
how our corresponding FACTLOG implementation enables this.

To obtain the operational scenarios for each process unit, we will utilize the work that is
being implemented for FACTLOG in terms of the Analytics module, the Simulation module
and the FACTLOG platform. More specifically, based on historical data from each process
unit, Machine Learning models are created (by the Analytics module) that model the
behaviour of each process unit (in terms of impurity removal, LPG reduction and energy
consumption). These models are then integrated within the Simulation module, which can
utilize them either to evaluate the performance of the LPG purification process as a whole
or of each process unit separately. For the latter, the Simulation module has included a
functionality to produce all possible operational scenarios for any process unit of the
TUPRAS LPG purification process with a given step for each corresponding operating
condition. These operational scenarios are then transferred via the FACTLOG platform to
the Optimization module to be consumed. The optimization module utilizes them to model
the corresponding on-specs recovery problem (i.e., the operational scenarios for each
process unit). In this manner, we fully utilize the interplay between the different modules of
FACTLOG (Figure 6).

Figure 6. Collaboration of Analytics, Simulation and Optimization modules for operational scenarios

Note that the pre-processing step of reducing the number of operational scenarios can be
integrated either within the Optimization module or within the Simulation module. In the
former case, the pre-processing step runs as soon as these operational scenarios are
received from the FACTLOG platform and before formulating the problem of on-specs
recovery. In the latter case, it runs within the Simulation module, after producing the
operational scenarios and before sending them to the FACTLOG platform. It must be noted
that the latter reduces the amount of data being transferred between modules. Nevertheless,
in both cases, the resulting set of operational scenarios would be the same.

By implementing the above collaboration of the Analytics, the Simulation and the
Optimization module (via the FACTLOG platform) in a real-time fashion, we can achieve
state-aware optimization, i.e., optimization that is dynamic and incorporates the actual
current situation of all production process units.

D5.2 Robust and energy-aware planning and scheduling V1.0

41

More specifically, once an off-specs situation is identified by FACTLOG (i.e., utilizing its
anomaly detection and simulation functionalities), the state-aware optimization process can
be initialized by FACTLOG. This would include feeding the Machine Learning models
(produced by the Analytics module and consumed by Simulation) with the current real-time
dataset of all the process units. The Simulation module then uses this data as input for its
underlying models to simulate the current behaviour of each process unit (i.e., the way it
currently operates in terms of removing impurities, consuming energy, etc.).
Computationally, this does not create any issues, since these models are already trained
and Simulation only performs scoring by giving them the corresponding dataset.

The produced operational scenarios then depict the current state of each process unit and
of the LPG purification process as a whole, since being created based on the current data
of the process. Hence, by consuming these operational scenarios, the Optimization module
obtains a model of production which is state-aware, i.e., it is produced taking into account
the current state of the process units and the way they operate. Hence, the resulting on-
specs recovery plan incorporates the current state of the process units. This is really
important, since, for an off-specs situation to occur, it must be the case that one or more
process units do not operate as they were supposed to.

D5.2 Robust and energy-aware planning and scheduling V1.0

42

4. Textile Industry: Pilot Case by PIACENZA

4.1 Introduction

Background. Manufacturers continuously aim at improving their operations regarding
supply, transportation and production, with the aid of cutting-edge technology tools. Within
the Industry 4.0 discourse, increased data availability urges stakeholders to expect more
efficient solutions to crucial fields of the production chain, including the long-standing aspect
of efficient production schedules. That is, scheduling algorithms Brucker (1999) remain a
viable and effective tool to improve productivity under challenging, tight and evolving
restrictions. These usually refer to the time needed to prepare the machines so as to process
a given order, the speed of each machine, the capability of splitting orders into parts,
precedence relations among orders and limited availability of resources that facilitate the
production process.

Our work is focused on the weaving scheduling of PIACENZA, a textile enterprise in north
Italy that manufactures woolen fabrics for luxury clothing brands. Its production environment
is a parallel weaving environment composed of multiple type of looms, operating at different
speeds. Weaving scheduling in PIACENZA adopts all the above-described job and machine
properties, plus setup resource constraints. Specifically, the number of setups that can be
performed simultaneously on different machines is restricted due to a limited number of
setup workers and daily setup time is also bounded. Under these restrictions, different
optimization criteria may be used to obtain the final schedule, driven by the completion
time(s) of the schedule (jobs) or to the delay beyond due date some orders may experience.
Therefore, depending on the existence and tightness of deadlines, we may opt for
minimizing either the makespan (no or very loose deadlines) or the total (weighted) tardiness
(strict or tight deadlines).

Literature review. We, distinguish previous literature works based on the objective that they
try to minimize. For makespan minimization, the work of Kim et al. (2004) provides a two-
stage algorithm. The identical-machine scheduling problem with job-splitting and sequence-
dependent setup times is addressed by Yalaoui et al. (2003) but only through a heuristic
algorithm. For unrelated machines, makespan minimization with sequence-dependent setup
times and job splitting is tackled in Eroglou et al. (2014) by employing a genetic algorithm
and in Rosales et. al (2015) and by exact formulation but a meta-heuristic approach.
Stronger LP Relaxations on unrelated machines with job-splitting are shown in Correa et al.
(2015), while Correa et al. (2016) examines approximation algorithms combining job splitting
and machine-dependent setups on all parallel machine environments but aiming to minimize
the weighted sum of completion times. As the MILP formulations grow large even for
medium-sized instances, exact methods relying on a decomposition of the problem or
alternative such models have drawn attention recently. The work of Tran et al. (2016)
attempts to address unrelated machines with machine and sequence-dependent setup
times by using logic-based Benders decomposition and branch-and-check. The same
problem variation is examined by Peyro et al. (2019), who provide a relatively efficient MILP
formulation and a heuristic algorithm.

In terms of tardiness related objectives, Kim et al. (2020) presents a MILP for the total
weighted tardiness minimization of a job shop scheduling problem on parallel identical
machines. Setup times are not sequence-dependent, but a maximum allowed tardiness

D5.2 Robust and energy-aware planning and scheduling V1.0

43

increases the complexity of the problem. The formulation of Maecker & Shen (2020) exploits
the properties of identical machines to consider variables without machines-related indices.
Even though the main core of the paper is based on metaheuristic methods, the proposed
MILP is also tested on small instances. Ozturk & Chu (2018) study the properties of parallel
identical machines environments to deduct dominance rules for batch creation of due-
related scheduling problems. The lower bounds, which are implied by these rules, prune
branches of the tree to speed up the performance of Branch-and-Bound algorithms. On the
other hand, MILP formulations seem to be inapplicable on unrelated machines
environments. The study of Bektur & Sarac (2019) is an attempt to extend the popular
makespan minimization problem to the weighted tardiness minimization problem. The
constructed MILP formulation is tested on a minimal dataset of 10 jobs and 2 unrelated
machines. A bi-objective problem (Cmax and ∑ 𝑇𝑗𝑗) is solved by a family of exact, heuristic

and metaheuristic methods, as presented by Moser et al. (2021). The generated datasets
concern a range of 20-1000 jobs and 1-30 machines. Even though the size of the large
datasets is remarkable, the exact methods are applied on the 25 smallest instances. Last,
Cheng & Huang (2017) study the minimization of earliness/tardiness problem on unrelated
machines, however their proposed algorithm outperforms the respective MILP.

Our contribution. We advance current literature in three main areas. First, as mentioned
above, our work has an important impact in a typical textile production. Weaving scheduling
problem has been well-studied, achieving exact polynomial time algorithms for special cases
where setup times are independent and job splitting is relaxed to preemption, under the goal
to minimise the maximum weighted tardiness (Serafini, 1996). Efficient heuristics have been
proposed for more general cases where the authors apply genetic algorithms to tackle large
real-life instances on unrelated looms under sequence-dependent setup times (Eroglou et
al., 2014), job splitting and machine eligibility constraints (Eroglou et al., 2017), with the goal
to minimise the makespan of the schedule.

Secondly, in terms of the makespan minimization, we solve the PMS problem on unrelated
machines with sequence-dependent setup times, job splitting and resource constraints.
Simpler variants of our problem have recently been studied, e.g., Lee et. al (2020) consider
identical machines, job splitting, multiple setup resources, fixed (independent) setup times
for each job, where the objective is the standard makespan minimization; in the same work,
the case of sequence-dependent setup times and unrelated machines is referred as an open
problem. This simplified version of our problem when solved by thereby suggested MILP
formulation is limited to instances with up to 6 jobs, thus a heuristic is developed to solve
instances of up to 100 jobs and 20 machines. The work of Kim et al. (2021) examines
uniform machines (rather than unrelated), setup times are sequence-dependent, while also
introducing machine eligibility. The heuristic algorithm proposed solves instances of size up
to 80 jobs and 20 machines, while for specific cases solutions up to 500 jobs and 20
machines were obtained. On the other hand, Peyro (2020) remove the job splitting property,
while adding more types of resource constraints.

Third, we contribute to the design of effective exact methods. Many of the aforementioned
works have tried to solve variants of this problem via exact methods. However, due to the
problem’s computational complexity, efficient solutions come at a cost: either optimal
solutions are obtainable for only small size instances or some of the properties are removed
to solve optimally a simplified version. The most important factors that increase
computational complexity are the job splitting property, which greatly enlarges the solution

D5.2 Robust and energy-aware planning and scheduling V1.0

44

space, and the resource constraint, which enforces the modeler to increase the number of
variables. Therefore, it seems reasonable to decompose the problem into two formulations.
This is a nontrivial task as multiple decompositions are plausible. For example, the first
component may deal with assignment and splitting of jobs, while the second one to settle
resource allocation; job sequencing per machine might be handled by either. Thus, we
present two different Logic-Based Decomposition Methods (LBBD), which are able to solve
instances of 200 jobs and 20 machines (for makespan, when coupled with an efficient
heuristic) under two different optimization criteria; makespan and tardiness. To exploit the
advantages of different optimizing methods, we opt for a LBBD algorithm, which is consisted
of a MILP formulation of a master problem and a CP formulation of a subproblem. Two
families of optimality cuts will also be presented. The implementation of our algorithm on
randomly generated instances proves that the performance gap between exact and heuristic
methods can be reduced. We should, also, mention that we manage to solve larger
instances than 4 current literature state of the art methods, even while considering a more
elaborate problem variation.

Outline. This document is structured as follows: In Section 2, we formally describe the
problems studied, while providing novel and effective lower bounds and a three-stage
heuristic for the makespan minimization problem. In Section 3, we explain the decomposition
methodology along with providing the necessary proofs. In Section 4, we numerically
evaluate the algorithms developed on benchmark instances, created similarly to current
literature. In Section 5, we conduct experiments based on real datasets provided from
PIACENZA. In section 6, we perform experiments which provide important findings on its
parameters as business consultation and provide policies for unexpected events. Finally,
Section 7 sums up our results and discusses some ideas for further work.

4.2 Problem Description

We consider a set of machines M and a set of jobs J*. To initialize each machine, we let J =
J* + {0}, where 0 is a dummy job. Each job j ∈ J is related to a processing time pj,m per
machine m ∈ M and a setup time si,j,m that varies with respect to both the machine m and
the job i ∈ J processed just before j in m. At each point in time, up to R machines can be set
up.

4.2.1 Problem A: Weaving Scheduling - Makespan

Since our motivation comes from the weaving process in textile manufacturing, we denote
“Weaving Scheduling – Makespan” the problem under the PMS environment combined with
the aforementioned properties and with the goal of makespan minimization. The problem is
NP-hard even in the case where setup times are independent and there are no setup
resource constraints (Correa et al. 2015).

4.2.1.1 Lower Bounds of Weaving Scheduling - Makespan

Model Parameters and variables are shown in Tables 4 and 5 respectively.

D5.2 Robust and energy-aware planning and scheduling V1.0

45

Table 4: Model Parameters

Table 5: Decision Variables

We formulate two mixed integer program formulations (MIP 1) and (MIP 2). We define (MIP
1), which distinguishes jobs between the ones that are firstly assigned - assuming that they
require an a priori constant setup time s0 - and the ones that follow. Constraints (1) ensure
that if a part of a job i ∈ J* is processed on a machine m ∈ M, then it should be also assigned.
Constraints (2) are similar to (1) but for the job assigned first, while (3) ensure that a job
cannot be assigned on a machine in both manners. Constraints (4) say that, if a job is
assigned as first on a machine, then a percentage of this job will be processed on this
machine. Constraints (5) ensure that each job is fully processed. Constraints (6) ensure that
at most one part of a job will be assigned as first on each machine. Constraints (7) ensure
that we cannot assign a job to a machine without having already assigned a first job to that
machine. Constraints (8) calculate the total load of each machine, taking into consideration
setup times, and ensures that it is less than or equal to the makespan of the schedule. Note
that in cases where the setup time of the first job is equal to 0, we substitute s0 with −δ in
Constraints (8).

D5.2 Robust and energy-aware planning and scheduling V1.0

46

(MIP 2) is similar to the formulation in Fotakis et al. (2020). It performs splitting and
assignment, based only on processing times, and consists of the following constraints with
the objective of minimizing Cmax:

Lemma 4.2.1. Consider an instance I of the Weaving Scheduling - Makespan problem. The
solutions of (MIP 1) and (MIP 2) are lower bounds to the optimal solution on I.

Proof. The difference between the two formulations is that (MIP 1) distinguishes jobs to the
ones which are processed first and the rest, while (MIP 2) considers only processing times.
Both formulations define relaxations of Weaving Scheduling, in which resource constraints
are neglected and setup times are set to their minimum values and while assuming a
constant setup time is common to both formulations and to Weaving Scheduling.

Given Lemma 4.2.1, a lower bound for an instance of the Weaving Scheduling - Makespan
problem can be computed by choosing the maximum between the optimal solutions to the
two models. Let us also define (MIP 3), which takes into consideration setup times during
the assignment step as in (MIP 1), but does not distinguish jobs based on whether they are
assigned first. It consists of (1) with the objective of minimizing Cmax and the following
constraints:

Contrary to the first two formulations, (MIP 3) offers a lower bound only if the (constant)
setup time of the first job is the largest among all setup times.

Lemma 4.2.2. Consider an instance I of the Weaving Scheduling problem. Then, the
solution of (MIP 3) is a lower bound to the optimal solution on I if and only if s0 ≥ sijm, ∀m ∈
M, i, j ∈ J*.

Proof. Exactly as (MIP 1) and (MIP 2), (MIP 3) considers that setup times are set to their
minimum values and neglects resource constraints. Assuming s0 ≥ sijm, and given that and
we take under consideration only the mini∈J si,j,m, it is clear that the sum of setup times of the
obtained solution on I will never be greater than the corresponding sum in the optimal
solution. Thus, (MIP 3) may be considered as a lower bound to the optimal solution on I. We
show the inverse, i.e., that (MIP 3) no longer provides a lower bound if s0 < sijm, by means
of an example.

For the instance of Table 6, the lower bound calculated by (MIP 3) is 10.5 (the ones by (MIP
1) and (MIP 2) are 9 and 7.5, respectively). It becomes easy to see that the optimal solution
is as shown in Figure 7 and has a makespan of 10.

D5.2 Robust and energy-aware planning and scheduling V1.0

47

Table 6: Random Instance for Lemma 4.2.2. Table on the left shows the processing times, while tables on the
right show setup times.

Figure 7: Optimal Solution of Table 6

In terms of computational complexity, it is clear that the proposed lower bounds are derived
through mixed integer linear programming formulations, and thus they are NP-hard. Still,
even for (MIP 1), which is the most involved formulation, quite large instances of 1000 jobs
and 20 machines (with 8 ·104 variables and constraints) were solved in less than 1 minute,
while larger ones of 3000 jobs and 20 machines, having 2 · 105 variables and constraints,
are solved in less than 2 minutes. Therefore, (MIP 1) and (MIP 2) are useful for obtaining
lower bounds, whereas (MIP 3) remains as an alternative model to be used by the primal
heuristic discussed in the next section. We propose a three-stage greedy heuristic algorithm
(GHA), which solves the problem iteratively and is able to return fast and efficient solutions
even for large size instances. The solution of GHA is used both as an upper bound and as
an initial solution to the LBBD method described next.

4.2.1.2 A primal greedy heuristic

GHA has three stages. This first stage with splitting of orders to parts and assigning these
parts to the machines. The second stage creates the sequences of the job parts on each
machine, based on the sequence-dependent setup times. The last one ensures that setup
resource constraints are not violated by creating appropriate time windows.

In the Assignment stage, we may choose any among (MIP 1), (MIP 2), (MIP 3) to compute
an assignment of job parts over all machines. To capture the iterative solution method of
GHA, we include in any formulation used the following:

D5.2 Robust and energy-aware planning and scheduling V1.0

48

Constraints (13) limit the number of the possible assignments, performed in each iteration.
Constraints (14) ensure that assignments which will consume more setup time than
processing time are excluded. Especially for (MIP 2), we also need to include Constraints
(1). The Sequencing Stage orders the assigned job parts by solving an asymmetric TSP
(aTSP) for each machine, where nodes are the job parts and the distance from a node to
another equals the sequence-dependent setup time of the associated pair of jobs plus the
processing time of the job part of the destination node. The aTSPs are solved to optimality,
in fact pretty fast through the method of Roberti et al. (2012). In the Resource Management
Stage, for each machine in decreasing order of load and each available group of workers,
we compute the earliest time that a job part can start its setup, respecting the order of job
parts whose setup has already been determined. The idea here is that, by starting from the
most loaded machine, we reduce significantly the effect of idle intervals between
consecutive job executions on the final makespan. Which among the three MIPs is most
appropriate regarding GHA can be determined only computationally. Our experience has
shown that (MIP 3) offers the most effective balance between solution quality and time.

4.2.2 Problem B: Weaving Scheduling - Tardiness

Now, let us associate each job j ∈ J with a deadline dj. We note that the deadline of each
job is not strict; if the completion time Cj of job j violates dj, then a tardiness Tj = max{0, Cj
−dj} is charged in the objective value. Additionally, even though we obtain all the properties
of “Weaving Scheduling – Makespan”, we decide to ignore job splitting. Thus, on a similar
manner to 4.2.1., we denote “Weaving Scheduling – Tardiness” as the PMS problem
combined with the aforementioned properties but under the goal of total tardiness
minimization.

4.3 An exact method Benders Decomposition

Benders (1962) defines an interative method where master problem M is strengthened by a
set of cuts at each iteration that solves a subproblem S. As classical Benders decomposition
is valid for non-integer subproblems, Hooker et al. (2003) presented the extended Logic-
Based Benders Decomposition (referred as LBBD hereinafter). Let us briefly describe LBBD,
while also introducing our notation. Let P = min{f(x) + g(y)|x ∈ Dx, y ∈ Dy} be the formulation
of a combinatorial optimization problem, in which x, y are groups of variables and Dx, Dy are
their respective domains. f(x) and g(y) are linear cost functions. P is decomposed into the
master problem M = min {z|z ≥ f(x), x ∈ Dx} and the subproblem S = min{g(y) + f(x)|y ∈ Dy},
in which z is an upper bound of f(x) and x̂ is a feasible solution of M. For iteration k, Mk−1

provides a feasible solution x̂k−1 to Sk. If the objective value of Sk is equal with the objective
value of Mk−1, then convergence is reached and the optimal solution is found.

Otherwise, a set of inequalities, called cuts are added to Mk:

z ≥ βk(x) ∀k = 1, ..., K

D5.2 Robust and energy-aware planning and scheduling V1.0

49

in which βk(x) is a bounding function that provides a lower bound of z. If x = x̂k−1, then βk(x)
will be equal with the objective value of Sk. These cuts are called optimality cuts, as they
ensure that their respective solution will not be computed again, unless it is the actual
optimal one. If Sk is infeasible for a solution x̂k−1, a set of feasibility cuts restricts M to compute
x̂k−1 in any succeeding iteration. As no infeasibilities may occur in our case, we will focus on
optimality cuts only.

4.3.1 LBBD for Weaving Scheduling - Makespan

Now, that we have defined the basic elements of LBBD, let us move on to the formulation
for the Weaving Scheduling – Makespan.

4.3.1.1 The master problem M for Weaving Scheduling - Makespan

Related decompositions for scheduling problems avoid overloading the master problem, as
the aTSP Problem is too complex to be solved (near) optimally. Thus, our master problem
computes the optimal assignments and sequences of jobs to machines, thus exploiting also
the solution offered by GHA. The master problem assumes an infinite number of workers,
i.e., unlimited setups at each period. To define a finite domain of variables, we convert the
fractional variables that indicate the proportion of splits into integer values of percentage.
Hence, integer variables Wi,m ∈ {0, 100} indicate the percentage of job i that is assigned to
machine m, rounded to the closest integer value Wi,m = wi,m·100. If Wi,m were regular
fractional variables that lay in [0, 1], the decomposition algorithm would never converge, as
the domain of variables would not be finite. The above do not suffice for an effective
decomposition, as subtours may occur. Typically, the constraints that define completion
times also ensure the elimination of subtours. However, as the computation of completion
times is not compulsory for a makespan objective, we opt for the subtour elimination
constraints of Miller-Tucker-Zemlin (Miller et al. 1960). Hence, we define auxiliary variables
ni,m, indicating the order of job i to machine m. The formulation of the master problem in
iteration k − 1 is Mk−1.

D5.2 Robust and energy-aware planning and scheduling V1.0

50

Let us explain our constraints in more detail. Constraints (22) define the makespan as the
greatest sum of processing and setup times of all machines. Constraints (15) ensure that all
jobs will be entirely assigned to machines, while (16) ensure that all jobs will be assigned to
machines. Moving now to sequencing, constraints (17) and (18) ensure that if job i is
assigned to machine m, it will also be assigned to one (different) preceding and a succeeding
job. Constraints (19) extend (17) for the dummy job 0. Constraints (20) eliminate subtours,
ensuring that the order of each job will be smaller than its succeeding one. The upper bound
(21) on variables nk−1

i,m is the number of jobs . Variables xk−1
i,j,m are equal to 1 if job j

succeeds job i in machine m, 0 otherwise. yk−1
i,m are binary variables that indicate whether

job i is assigned to machine m and the respective variables Wk−1
i,m indicate the integer

percentage of job i that is assigned to m. Auxiliary variables nk−1
i,m denote the order of job i

in the sequence of machine m. Let x̂k−1 = {x̂k−1
i,j,m, ŷk−1

i,m , Ŵk−1
i,m} be the optimal solution and

ẑk−1 be the objective value of Mk−1 after iteration k − 1. Variables n̂k−1
i,m are auxiliary, therefore

they do not contribute to the input of x̂k−1 to the subproblem. As already mentioned, the LBBD
hardly solves instances of more than 10 jobs, because the master problem M fails to
compute feasible solutions for larger datasets. As we have already computed a primal
solution by the GHA heuristic, we can supply it to the solver as a warm start (CPLEX). In
particular, as the master problem does not include the Resource Management Stage of the
problem, we use the solution of the Assignment Stage and the Sequencing Stage of the
GHA heuristic as a primal feasible solution of Mo for the first iteration of the LBBD algorithm.
Combining the GHA heuristic with the master problem increases the capabilities of our exact
method, so that large instances can be solved, as we will show next.

D5.2 Robust and energy-aware planning and scheduling V1.0

51

4.3.1.2 The subproblem S for Weaving Scheduling - Makespan

As all assignments and sequences are computed by M, the subproblem ensures that the
setups will not simultaneously occupy more workers than the available ones. We also
consider a constraint that imposes a daily setup time limit u (intended to be used for the real
datasets only). As it is proved from experience that CP formulations handle these kinds of
constraints more efficiently than equivalent MILP formulations would do, we opt for a
Constraint Programming formulation. The set of used machines is denoted by M̄k−1 = {m ∈
M| Σi∈J* ŷk−1

i,m ≥ 1} and the fixed sequences of jobs on machines are denoted by v̄k−1
m. Let

s̄k−1
i,m be the setup time and p̄k−1

i,m be the processing time of the i th job of sequence ν̄k−1
m .

Let Sk be the formulation of the subproblem in iteration k.

Interval variables µ̄ki,m indicate the time interval of the setup of the i th job of sequence ν̄k−1
m.

The size of the interval is the setup time that has been computed by the solution of Mk−1.

Constraint (23) is a global constraint, ensuring that the number of simultaneous setups that
start at start_of(µ̄kim), terminate after s̄k−1

i,m and occupy 1 worker cannot exceed the number
of available workers R. Constraints (24) ensure that the processing and setup times of all
jobs will not overlap in the same sequence. Constraint (25) defines the objective function ζk,
which is the updated value of makespan. Let ζk be the objective value of Sk. If ẑk−1 < ζk, a
set of optimality cuts will be added to Mk. Otherwise, ζk is the minimum makespan of the
problem.

4.3.1.3 Optimality cuts and algorithm

This is the most technical part of the LBBD exposition. Let P be the original optimization
problem. The LBBD gives rise to Algorithm 2, which converges to the optimal solution of P
if the proposed optimality cuts (29)-(32) are valid.

D5.2 Robust and energy-aware planning and scheduling V1.0

52

We construct a bounding function βk(xk) of variables xk in iteration k which adheres to the
following conditions:

C1: the bounding function provides a valid lower bound of z, that is, z ≥ βk(xk) for all feasible
solutions xk.

C2: if xk = x̂k−1, then z = βk (x̂k−1), for which x̂k−1 is the solution of Mk−1 for iteration k − 1.

Let Pk−1 be the set of assigned pairs of jobs to machines after iteration k − 1: Pk−1 = {p = (i,
m) |ŷk−1

i,m = 1 ∀ i ∈ J∗, m ∈ M}. Now, we construct a set Ak−1 which includes all assignments
(i, j, m) for which x̂ k-1

i,j,m = 1: Ak−1 = {a = (i, j, m)| x̂ k-1
i,j,m = 1}. Let βk(xk) be the bounding

function of iteration k:

for which, if all assignments a ∈ Ak−1 and splits of pairs p ∈ Pk−1 are the same for iterations
k − 1 and k, then the bounding function is equal with the objective value of the subproblem
Sk. On the contrary, if any assignment a ∈ Ak−1 or split of pair p ∈ Pk−1 differs in k, then the
value of the bounding function is 0. Now, we construct a set of linear expressions, so that a
cut of the following form: z ≥ βk(xk) is added to Mk. We define binary variables ρk

p which are
equal to 1 if Wk

p = Wk-1
p, p = (i, m) ∈ P, 0 otherwise. The following conjunction is trivial

D5.2 Robust and energy-aware planning and scheduling V1.0

53

Let λp
≥k and λp

≤k be binary variables that are equal to 1, if Wk
p ≥ Ŵk-1

p and Ŵk
p ≤Wk-1

p,
respectively, and 0 otherwise. Such binary indicator variables are known as literals (Lam et
al. 2020). By (27):

To construct the linear expression of (27), we convert the disjunctive indicator constraints of
(Lam et al. (2020), inequality (6)) to the following conjunctive form:

where υ is a small number (0 < υ < 1) and V is a big one (V ≥ 100 + υ). If both of (29) and
(30) hold for a pair p ∈ Pk−1, then ρk

p will be equal to 1. (28) is equivalent to

The following cut ensures that if all assignments xk
ijm = 1 for a = (i, j, m) ∈ Ak−1 and all splits

Wk
p = Ŵk-1

p for p = (i, m) ∈ Pk−1, then ζk will be a lower bound of z.

We can now show the following, in a style similar to (Hooker (2007), Theorem 1).

4.3.2. LBBD for Weaving Scheduling – Tardiness

On a similar way as for Weaving Scheduling – Makespan, we move on to describe the LBBD
formulation for Weaving Scheduling – Tardiness.

D5.2 Robust and energy-aware planning and scheduling V1.0

54

4.3.2.1. The Master Problem for Weaving Scheduling – Tardiness

The proposed formulation of M is a MILP model, which provides tight lower bounds for all
tardiness variables. Variables Yim are equal to 1 if job i ∈ J is assigned to machine m ∈ M, 0
otherwise. Xijm is equal to 1 if job i ∈ J is assigned to slot j ∈ J of machine m ∈ M, or 0

otherwise. Cjm is the completion time of slot j ∈ J in machine m ∈ M, tdjm is the due time of
slot j in machine m, and Tjm is the tardiness of slot j in m. To avoid big-M constraints, we
omit the sequence dependency of setup times, by replacing the original sjim values with s̄im
= minj∈J sjim, sjim being the setup time of job i in machine m, if the precedent job is j. As s̄im ≤
sjim ∀i, j ∈ J, m ∈ M, the optimal objective value of M is a lower bound of the global optimal
objective value of P.

Constraints (34) and (35) ensure that each job will be assigned to one slot of one machine.
Constraints (36) ensure that each slot j ∈ J can process only one job i ∈ J at most.
Constraints (37) initialize the completion times of machine m, and Constraints (38) define
the completion time of slot j as the completion time of the preceding slot j−1, added by the
processing and setup times of the job i that is assigned to j. Constraints (39) define the due
time of slot j, according to the due time of the assigned job i, as Constraints (40) compute
the tardiness of slot j. The objective function (33) is an upper bound of the sum of all
tardiness values. The solution of M is a set of sequences M̄, in which each sequence m ∈
M̄ is associated with machine m ∈ M. The slots of the sequences are assigned to the

respective job for which Xijm = 1 (i.e., mj = i indicates that the slot j of sequence m ∈ M̄ is

connected with job i ∈ J).

4.3.2.2. The subproblem for Weaving Scheduling – Tardiness

One of the most significant benefits of decomposition methods is the combination of different
optimizing methods. As several recent studies prove that Constraint Programming

D5.2 Robust and energy-aware planning and scheduling V1.0

55

formulations are more efficient for scheduling problems that involve sequence-
dependencies and resource constraints, we opt for a CP model, denoted by S. The solution
of S considers the actual setup times sijm of the sequences of jobs that are supplied by the
solution of M, as well as it ensures that the optimal schedule will respect the availability of
workers R, which was neglected by M. We define a set of interval variables σmj for each slot
j of sequence m ∈ M̄.

Constraints (46) and (47) define the duration of each setup task as the sequence-dependent
setup time of the respective job mj. The global constraint Cumulative ensures that no more
than R setup tasks that start at startOf(σmj) and occupy 1 worker for sizeOf(σmj) time, will
be executed simultaneously (42). Constraints (43) and (44) compute the updated values of
completion times and tardiness respectively. Constraints (45) ensure that each setup task
must start later than the completion time of the preceding slot. The objective function ζ (41)
is the sum of tardiness.

4.3.2.3. Optimality Cuts for Weaving Scheduling – Tardiness

To secure the convergence of the LBBD to the optimal solution of P, a set of valid optimality
cuts must be added to M, after a new upper bound is obtained. We can safely assume that,
if M computes a set of sequences M̄ that has been already fed to S before, implying an
upper bound equal to U, then the new upper bound is expected to be equal to U as well.
Hence, the first family of cuts involves a cumulative optimality cut, which resembles the
corresponding cuts of (Hooker, 2007):

D5.2 Robust and energy-aware planning and scheduling V1.0

56

Let Ak−1 be the set of assignments of jobs-to-slots-to-machines that have been computed in
iteration k −1 (i.e., for each a ∈ Ak−1, a0 = i, a1 = j, a2 = m for which Xijm = 1). The assignments
of Ak−1 implied an upper bound Uk. For each iteration k, cut (48) ensures that, if all
assignments Ak−1 are selected again, then the objective value z of M will be greater than the
respective upper bound Uk. In other words, M is forced to select a new set of sequences M̄
to avoid the objective value Uk, unless the latter one is the minimum feasible. In this case,
the lower and upper bounds converge and the optimal solution is found. By modifying
analogous proofs, it can be shown that Algorithm 3 converges to the optimal solution of P
after finitely many iterations.

4.4 Benchmarking on random datasets

We, now, move on to examine our proposed methods on benchmark datasets.

4.4.1. Benchmark experiments for Weaving Scheduling - Makespan

We randomly generate instances with number of machines |M| ∈ {2, 5, 10, 15, 20} and
number of jobs |J| ∈ {10, 20, 30, 40, 50, 80, 100, 150, 200, 300, 400, 500, 700, 1000}, i.e.,
70 combinations. To better capture the fact that machines are unrelated, the processing time
pim of job i ∈ J in machine m ∈ M is set to bi·aim plus some noise selected uniformly at random
(u.a.r.) from [0, 10], where bi and aim are selected u.a.r. from [1, 10] (as in [Fotakis et al.
(2016)). For the sequence- and machine-dependent setup times, we set sijm = αijm · pjm,
where αijm is selected u.a.r. either from [0.01, 0.1] or from [0.1, 0.2] or from [0.1, 0.5] (as in
Kim et al. 2021)). This is a total of 70 × 3 = 210 instances, each solved for 3 different number
of working resources R ∈ {1, 3, 5}.

Experiments for the GHA heuristic has been performed on a server with 4 Intel(R) Xeon(R)
E2126G @ 3.30GHz processors and 11 GB RAM, running CentOS/Linux 7.0. We used
Python 3.8.5 for scripting and Pyomo 5.7.3 with the Gurobi Optimizer 9.1.5 (GUROBI) for
solving the MIPs. The LBBD experimentation has used a server with 8 Intel(R) Core(TM) i7-
4790 CPU @3.60GHz processors, also running CentOS/Linux 7.0. The solver of the LBBD
was CPLEX 20.1 [IBM], via the Python API for the master problem and the CP Optimizer of
the DOcplex module for the subproblem.

D5.2 Robust and energy-aware planning and scheduling V1.0

57

4.4.1.1 Performance of the GHA heuristic

For the assignment step of GHA, the solver is interrupted after either 60 seconds or if 0.1%
optimality gap is reached. For instances with 700 or 1000 jobs, the gap limit is increased to
0.5%. Similar limits are imposed for the aTSP determining the sequencing per machine.
Since s0 = 0 < sijm for any i, j ∈ J*, m ∈ M, we conclude that we cannot use the solution of
(MIP 3) as a lower bound. Table 4.4.1 shows that (MIP 1) offers better lower bounds than
(MIP 2) (recall Section 4.2.2.1), where Diff is the % increase in the lower bound computed
via (MIP 1) compared to that of (MIP 2). We conclude through Table 7 that (MIP 1) provides,
on average, 3.24% tighter lower 15 bounds although requiring more time.

Table 7: Experiments on LB Table 8: Benchmark Experiments of GHA

Further testing, not listed here for brevity, has shown that (MIP 3) is more suitable for the
assignment step of GHA as it finds better solutions than (MIP 2) in much less time than (MIP
1). Therefore, Table 8 shows the results for GHA when using (MIP 3) for the assignment
step but with the lower bound LB calculated as the maximum between the optima of (MIP

1) and (MIP 2). The running time is measured in seconds and Gap =
(GHA−LB)· 100

LB
. The

presentation style follows that of [Kim et al. 2021)]. Instances having 2 machines and 1000
jobs are not solved, as the aTSP exceeds our time limit. The average gap is 22.28% and
the average time is 160 seconds. These average values would be significantly lower if
excluding the (rather extreme) case of R = 1. For R = 1, large gaps are to be expected,
especially when the number of machines increases. However, for R = 3, we see that the
average gap drops to 11.46% and for R = 5 to 9.14%. It is worth noting that GHA solves
instances with more than 400 jobs and more than 10 machines, i.e., large-scaled regarding
current literature. When α ∈ [0.01, 0.1], GHA provides almost optimal solutions at a 3.63%
optimality gap relatively fast (161 s in average). As expected, when α increases thus
representing higher sequence-dependent volatility, we obtain much higher gaps. This,
however, is also attributed to the worse LB, i.e., as once α goes up and the makespan
becomes more affected by setup times, (MIP 2) performs worse on assignment and splitting.
In addition, we use setup working resources R for longer intervals, thus their availability falls
and machines are idling.

4.4.1.2. Performance of LBBD coupled with GHA

Regarding LBBD, K is set to 20 and E is set to 1%, (i.e., Algorithm 2 terminates after 20
iterations or after Gap falls below 1%). We also impose that the algorithm terminates if 10

D5.2 Robust and energy-aware planning and scheduling V1.0

58

consecutive iterations do not provide an improved Upper Bound. A time limit of 600 seconds
is imposed on the solution of the master problem. If this limit is reached (i.e., the solution of
M remains sub-optimal), the Lower Bound of the respective iteration is not necessarily the
highest, thus we take the maximum over all iterations to ensure that Gap takes the real
optimality gap of P. There is no time limit for the subproblem, as it is solved in a few seconds.
As already mentioned, to increase the capabilities of the LBBD, we use the solution of the
first two stages of GHA as a warm start for the MILP solver, to provide a primal feasible
solution for the master problem in the first iteration of Algorithm 2. In that manner, we exploit
the complementary strengths of GHA and LBBD: GHA gives a quick upper bound, which
LBBD may or may not improve, and LBBD improves the lower bound thus aiming at a
considerably smaller gap. Table 9 shows that this idea is beneficial. Gap equals
𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 − 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
 and Time is the convergence time (in seconds). As the Lower Bound

of the LBBD is always tighter than the respective LB of Algorithm 2, we also add column

GHA, which is the actual optimality gap of the heuristic solutions
𝐺𝐻𝐴 − 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
. Although

LBBD computes better solutions than GHA, we notice that no such solutions are provided
for several datasets with more than 300 jobs. Datasets of 400 and 500 jobs can be handled
only for 2 machines and the datasets of 700 and 1000 jobs cannot be solved at all due to
memory limitations. Still, LBBD solves to near-optimality all datasets, for which feasible
solutions are provided. That gap is less than 10% for up to 10 machines and no more than
20%. There is an obvious trade-off between Gap and Time, as very few datasets are solved
in less than one hour. For the first set of α values, we observe that the difference between
the gaps achieved by the LBBD and GHA is insignificant. For datasets of 2 machines, LBBD
computes worse solutions than GHA in average. As α values increase, i.e., setup and
process times costs are increased, LBBD tends to provide significantly improved solutions.
Overall, as expected for an exact solution method, LBBD provides improved solutions with
an average gap of 5.44% compared to the 17.57% of GHA. The average duration of LBBD,
though, is larger than one hour, while the heuristic solution is provided in a few minutes.
Combined together, they form a versatile approach for finding solutions of good quality in
instances of substantial size.

Table 9: Benchmark Results of LBBD for Weaving Scheduling - Makespan

D5.2 Robust and energy-aware planning and scheduling V1.0

59

4.4.2. Benchmark experiments for Weaving Scheduling – Tardiness

The benchmark experiments for Weaving Scheduling – Tardiness were performed on a
Linux server (4 processors, 3.3 GHz CPU, 12 GB RAM) using CPLEX 20.1 (Python API for
MILP and CP Optimizer in DOcplex for CP). A time limit of 300 seconds is imposed on the
master problem M. For the termination of Algorithm 3, a maximum number of K = 20
iterations and a maximum Gap of E = 0.1% are imposed. We consider randomly generated
instances of |J| ∈ {10, 20, 50, 100, 150, 200} jobs and |M| ∈ {2, 5, 10, 20} machines. To the
best of our knowledge, the maximum-sized among these exceed the sizes that are
presented in relative literature for exact methods. Each combination of |J| × |M| (excluding
instances for which |M| ≥ |J|) is run for R = {2, 5, 10, 20}. If R = |M|, there are unlimited
resources in practice, instances for which R > |M| are meaningless. We also consider two
variations of tardiness, denoted by Tight and Loose attributes. Processing and Setup times
are created as for benchmark instances for Weaving Scheduling – Makespan, while τ =

{0.2,0.8} and ρ = {0.2,0.8}. Pi = minj,m (pjm + sijm) and di is selected u.a.r from (Pi · (1-τ -
𝜌

2
) ,

Pi ·(1-τ +
𝜌

2
)). Note that for Tight instances, τ = 0.2, ρ = 0.8, and for Loose instances, τ = 0.8,

ρ = 0.2. The generators for the processing times, setup times, and due times are inspired
by Fotakis et al. (2016), Kim & Lee (2021) and Dogramaci & Surkis (1979) respectively. The
results are presented in Table 10.

Table 10: Results for Weaving Scheduling – Tardiness on benchmark instances

As we notice, the value of gap is less than 10% for most of the generated instances. Tight
deadlines imply solutions of smaller gaps than the respective Loose ones, nevertheless both
cases are solved in almost identical times. However, we notice that the limitation of
resources has a heavy impact on the performance of the LBBD, as the gaps and the elapsed
time are both significantly increased. For instances of R = 2 workers and |M| > 10, the
algorithm requires almost one hour to be completed and the computed gaps are greater
than 10%. For the rest of the instances, no more than a few minutes are required to terminate
the algorithm.

D5.2 Robust and energy-aware planning and scheduling V1.0

60

4.5. Results on PIACENZA data

We, now, present our results for experiments performed on real data from PIACENZA.

4.5.1. Results of Weaving Scheduling – Makespan

We have applied our methods on the weaving plant of PIACENZA. The plant operates with
two different types of (parallel) looms depending on their corresponding speed, namely 300
or 400 strokes/minute. This information, combined with fabric specification and the quantity
of an order, returns the processing time needed per job and loom. Since the aforementioned
calculated time is an estimation, we include in our experiments a factor cim u.a.r. selected
from [0.8, 1.2] to better capture the real nature of the problem. The values of sequence-
dependent setup times are taken from {0h, 4h, 6h, 8h}, and are determined by the
chainability/annotability codes, yarns and comb heights, and codes for each job (s0 = 1h).
There are 3 groups of workers available for setups, each loom requiring one such group,
plus an upper bound of 50h on the daily total setup time. Each order is splittable to parts of
length at least 50 meters. Let us list some minor adjustments of our approach. To apply
GHA, we substitute constraints (10) in both (MIP 1) and (MIP 2) with the following:

In (MIP 1), we also need to include:

where the parameter ℓim is calculated by the processing time calculation formula, when
setting the quantity equal to the ‘lower splitting bound’ (50m in our case). To adapt our LBBD
accordingly, we add to the master problem Mk−1 of iteration k − 1:

To enforce the maximum of 50h on daily setup time, we add to the subproblem Sk of iteration
k:

where u = 3000 (50h in minutes) and D is the cumulative minutes per day, e.g., D = {1440,
2880, 4320} regarding 3 subsequent days. The experiments are performed on 45 weekly
instances, spanning January to December 2020. The number of jobs per instance ranges
from 7 to 94. GHA and LBBD results are presented in Table 11.

Table 11: Results for Weaving Scheduling – Makespan on real data

D5.2 Robust and energy-aware planning and scheduling V1.0

61

GHA reaches a good solution in a few seconds, while LBBD establishes near-optimality in
less than 2 hours.

4.5.2. Results of Weaving Scheduling – Tardiness

We now present the results of the algorithm presented for Weaving Scheduling – Tardiness
on real data instances.

Table 12: Results for Weaving Scheduling – Tardiness on real data

We observe that the time needed has severely dropped for both objectives (total tardiness
and number of tardy jobs) compared to the makespan objective. This mainly comes from
the fact that job splitting – a property that highly increases computational complexity – is
ignored. However, we observe that our method would be able to be applied on an online
manner for the PIACENZA environment.

4.6. Decision Support

Apart from efficiently solving incoming instances, it is important to provide the necessary
decision support for plant managers.

4.6.1. Sensitivity Analysis

Given this performance, we have used GHA as a tool evaluating different structural
decisions, namely the splitting lower bound SLB, the daily setup limit DSL and the number
of worker groups R available for setup, i.e., the maximum number of simultaneous setups.
Please note that LBBD could be used for the same purpose but under a significantly longer
computational time. We divide the weekly instances into two sets using either the number
of jobs |J| or the average order quantity |Q| in meters or the percentage of splittable jobs h.
Let N = {1, 2,..46} denote the set of real data instances. Averages over all 46 weekly
instances are as follows: the mean number of jobs is |J| = 49.5, the mean order quantity is

k = 123.39 m, calculated by k = ∑
|𝑄𝑛|

𝑁
𝑁
𝑛=1 where |Q|n is the average order quantity of instance

n ∈ N, and the average percentage of splittable jobs is h = 34.7 % calculated by h = =

∑
𝑆𝑝𝑙𝑖𝑡%𝑛

𝑁
𝑁
𝑛=1 where Split%n =

Splittable_jobs

|𝐽|𝑛
 is that percentage regarding instance n. For each

division, we have solved both subsets of the 46 instances for all 27 combinations of R = {1,
3, 5}, DSL = {3000, 4500, 6000} and SLB = {30, 50, 70}, over M = {2, 4, 6, 8, 10, 12}. For
each combination and number of machines we calculate the average makespan. As
changes in SLB show a small impact, we sustain only the makespan for SLB= 50m. Table
13 shows the percentage of makespan change when moving from R = 1 to R = 3, or R = 3
to R = 5 on each criterion group. IR as a prefix denotes any (average) makespan change
attributed to the number of worker groups R. We observe that as the number of machines

D5.2 Robust and energy-aware planning and scheduling V1.0

62

increases extra workers are needed. It is also evident that an increase in the number of
working groups R from 1 to 3, has a substantial impact, which is diminished when moving
from R = 3 to R = 5. This is more impressive for large instances, smaller-sized orders, and
low splittability. These are valuable insights for the plant managers regarding the investment
in human resources depending on the characteristics of the weekly orders and the number
of looms available.

Table 13: Improvements of R vs M under different criteria

Figure 8: Solution changes when increasing |M| under different criteria

D5.2 Robust and energy- aware planning and scheduling

63

Analogous insights are provided regarding the number of machines in Figure 8. IM is the
makespan change observed when the ‘control’ variable is the number of machines.
Indicatively, moving from |M| = 2 to |M| = 4 slashes the makespan by 50 %. This
improvement is, as expected, smaller as M increases further. Although the change is
approximately identical regardless of the three criteria dividing the instances (jobs, order
size, splittability), larger quantities and more splittable orders exhibit a slightly larger
improvement, as this further exploits the availability of additional machines. Here, a plant
manager may decide upon the trade-off between higher capital investment versus higher
operating cost. Last, the impact on makespan when increasing DSL (the daily setup limit) is
shown in Figure 9 and Figure 10. For R = 3, |M| = 12 and increasing DSL from 3000 minutes
to 4500 minutes, we have important improvements of 5% especially for large size instances
with small quantities and mostly unsplittable jobs. However, these improvements do not
significantly change when DSL is set to 6000 minutes. To the contrary Figure 10, shows that
for R = 5 and |M| = 12, significant improvements remain when DSL increases from 4500 to
6000. A cost-benefit analysis for the different investment options is beyond the scope of our
study. What the above show is that an exact method that consistently finds near-optimal
solutions in reasonable time can be nicely exploited as a decision-support tool for both
operational decisions (e.g., increase of resources) or more strategic ones (e.g., increased
production capacity).

Figure 9: Solution Improvements when increasing DSL for R = 3

Figure 10: Solution Improvements when increasing DSL for R = 3

D5.2 Robust and energy- aware planning and scheduling

64

On a modern business environment, it is often the case that unexpected events occur that
negatively impact the production process. In order to present our findings, we use the
following example, with an instance created in a similar manner as in Section 4.4.1. Suppose
we are working on an environment, which operates with three unrelated machines and a set
of seven customer orders (jobs) is received. Processing times and setup times are provided
on the following tables (measured in time units). Setup resources are assumed to be
unlimited.

Table 14: Example Instance

 The optimal solution is presented on the Figure 11.

Figure 11: Gantt chart for optimal solution for Example Instance

4.6.2. Maintenance

One case that may occur is when machines need to be shut down e.g. for maintenance
purposes. When this information is available by the time a production schedule has to be
provided, the optimization algorithm has to take into consideration time intervals for which,
a machine will be unavailable. Thus, we would recommend the inclusion of two additional
input fields for each loom, providing information regarding the time that a machine may be
unavailable. Now, let us assume that beforehand, it is known that machine 1 will be
unavailable on time units 7 to 10. A near-optimal solution in this case is presented in Figure
12.

Figure 12: Gantt chart for solution of instance with maintenance interval

When comparing the above Gantt chart with the initial one, we observe that the makespan
is increased by 1.8. However, the schedule presented above respects the extra constraint
of unavailability for machine 1. Thus, it is important for exact methods to be employed, as
among others, have the advantage of incorporating naturally these types of restrictions.

D5.2 Robust and energy- aware planning and scheduling

65

4.6.3. Malfunction

On the other hand, a common phenomenon are machine malfunctions. These events occur
after the beginning of the execution of the production schedule. Thus, when malfunctions
happen, it is necessary to take fast and efficient decisions to normalize the production
schedule. We, now, assume that we have begun executing the schedule presented on the
initial instance, when suddenly, machine 1 stops the processing and is incapable to recover.
The solution of this occasion is shown in Figure 13.

Figure 13: Gantt chart for solution of instance with machine malfunction

We observe that job 4 is forced to stop being processed on machine 1, and is allocated to
machines 2 and 3 respectively.

4.7. Concluding remarks

We have examined a parallel machine scheduling problem with unrelated machines, job
splitting, sequence- and machine-dependent setup times and limited setup resources. We
have proposed a LBBD formulation, which when enhanced with the solutions of a novel
heuristic algorithm solves near optimally large-size instances under reasonable time. Our
heuristic alone provides good quality solutions for very large instances; solution quality is
verified using also the novel lower bounds we propose. Additionally, we have proposed an
efficient LBBD approach in order to deal with our problem with the goal of tardiness
optimization. The performance of our methods has been evaluated on both various
benchmark instances and real data from PIACENZA’s weaving process. Our results could
motivate further work in various terms. There might be slight variants of the problem
examined here, for which both GHA and LBBD might improve current literature. An indicative
example is the problem where some orders have different processing alternatives (Kim et
al. 2020), thus splitting comes up of the multiple parts of an order, known in advance.
Perhaps the most important direction would be to further examine robustness, either through
extended formulations that proactively encompass uncertainty for some of the parameters
(e.g., the maximum number of simultaneous setups, or machine availability), or through
other methods that reactively alleviate the effects of disruptive events (e.g., machine
malfunctions or breakdowns), as in (Eirinakis et al. 2021; Kim et al. 2020).

D5.2 Robust and energy- aware planning and scheduling

66

5. Steel Manufacturing: Pilot Case by BRC

5.1 Introduction

Scheduling is among the most important issues that concern the operation of manufacturing
systems. Its aim is the efficient allocation of tasks to machines along with the subsequent
time-phasing of this allocation. In general, tasks individually compete for resources which
can be of a very different nature, e.g., manpower, money, processors (machines), energy,
tools. The same is true for task characteristics, e.g., set up times, due dates, relative urgency
weights, and functions describing task processing in relation to allotted resources.
Moreover, a structure of a set of tasks, reflecting relations among them, can be defined in
different ways. In addition, different criteria which measure the quality of the performance of
a set of tasks can be considered (Blazewicz et al., 2014).

In this part we discuss flow shop scheduling problems, and more precisely we analyse the
case of BRC Ltd, which is among the leading UK companies in steel reinforcement. Steel
industry is an important industrial sector in UK and one of the biggest worldwide.

In what follows we briefly introduce the case of BRC, we describe its products, the
manufacturing line and its major components, the warehouse procedure etc. Then we
outline the relevant operational research literature.

Our aim is to develop a conceptual model for a part of the production after the "storage" and
prior to "loading and dispatch" to the customers. We will construct a multistage flexible flow
shop model and we will propose a suitable mixed integer programming model. Finally, we
will present some preliminary results from the application of the MIP model on a set of
randomly generated instances.

5.1.1 Scheduling

Today, resource management is an inevitable part of the performance and efficiency
optimization in manufacturing and service industries. Scheduling is the allocation of shared
resources over time to competing activities. It has been the subject of significant amount of
research in the operations research field. Emphasis is given on investigating machine
scheduling problems where jobs represent activities and machines represent resources;
each machine can process at most one job at a time. The resources include the use of
equipment, the utilization of raw material or intermediates, the employments of operators,
etc. The purpose of scheduling is to optimally allocate the limited resources to processing
tasks over time and the decisions to be determined include the optimal sequence of tasks
taking place in each machine, the amount of material being processed at each time in each
machine and sometimes the processing time of each job in each machine.

In addition, scheduling problems could be classified into offline and online. In an offline
problem, the number of jobs, release dates, delivery dates, processing times, due dates and
other input data are known in advance. When data are not known in advance, but they are
realised only when a job is released then the problem is classified under the label of online
scheduling. Such problems have been extensively used for resource planning in distributed
systems (Hsu et al., 2010; Steiger et al., 2003.)

The two most common types of scheduling problems, which are native to manufacturing
jobs, are Job-Shop Scheduling Problem (JSSP) and Flow-Shop Scheduling Problem
(FSSP). An important classification is based on the nature of the production facility to

D5.2 Robust and energy- aware planning and scheduling

67

manufacture the required number of products utilizing a limited set of units. If production
orders follow different production routes (require different sequences of tasks) and some
orders may even visit a given unit several times it is known as a multipurpose plant and the
related optimization problems are also called job-shop problems. If every job consists of the
same set of tasks that are performed in the same order and the units are accordingly
arranged in production line, it is classified as a multiproduct plant called flow-shop problem
(Li and Ierapetritou, 2007). The latter class of problems is the ones that are mostly met in
practice.

The main distinction between flow-shop and job-shop is that, in the former case each job
passes the machines in the same order whereas in the latter case the machine order may
vary per job. So, the arrival of a job at a particular machine is not stochastic and most of the
jobs that flow through that machine are similar in nature. Since workflow in a job shop in not
unidirectional, scheduling becomes quite harder and tedious. Jobs in a FSP are produced
either continuously or in batches (Mahale, 2017). We consider the batch process in the
sense that once processing of a batch is started, it cannot be interrupted, and other jobs
cannot be introduced into the batch.

5.1.2 Case Description for BRC

BRC Ltd is the UK’s largest supplier of steel reinforcement and associated products for
concrete. They fabricate cut & bent rebar to the specs of BS8666:2005 and governed by the
independent steel reinforcement governing body C.A.R.E.S. In 2009 BRC was acquired by
the Celsa Steel Services UK group and currently has 4 depots in the UK with the largest
being in Newport South Wales which can produce up to 2000 tonnes of fabricated
reinforcement for the construction industry per week. The rest are in Romsey near
Southampton, Mansfield in the midlands and Newhouse up in Scotland. BRC manufactures
bespoke products for the construction industry with a lead-time of 5-7 days where each
batch is unique and can be up to 2 tonnes of steel in one product batch. These can be in
the form of simple straight bar, “U” shaped bars to complicated 99 shape codes where it
could be 3D shapes. The process is to cut and shape from stock lengths of straight or coiled
rebar and go through the flow process which will be explained with more details below.

Production transforms the stock into products which are placed by cranes in the finished
product lay-down area. The orders (batches) are fulfilled by placing the various finished
products, which these orders are composed of, onto the trailers. At this phase there is a
scanning procedure where each product gets a time stamp. When the order is complete the
batch is ready for shipment to customer. All the material movements inside the production
line are made by cranes which are a limited shared resource. BRC reported that considering
an additional crane is not an option due to space limitations.

We can segment the BRC factory into distinctive parts where different processes take place.
Looking at figure (Figure 14) that displays the factory layout we see that it is segmented
vertically into the left and right part responsible to produce coils and bars respectively.
Additionally, distinct places are:

• A : Stock Coil (left) and Stock Bars (right) is stored in different places relevant to
diameter.

• B : For the 3 bays different cranes transfer the raw material from A to any other of the
three B's in order to always have stock to feed in the machines. When a crane
operator observes that in any B there is a shortage of raw material, either coils or

D5.2 Robust and energy- aware planning and scheduling

68

bars, he/she proceeds to move to A, pick up respective raw material and deposit to
respective B.

• C: For the 3 bays this place denotes the position where the trailers that will carry the
final products to the end customer(s) are located in order to be filled with completed
products towards forming completed orders.

• D: Once a C is considered as full it proceeds to location D to be ready to leave the
factory towards delivery to the end customer.

Figure 14: BRC Facility Layout

After receiving the raw materials, the company stocks them into its warehouse in bars or in
coils. When an order is received, stock availability is considered. The coil material goes
through bending in different shapes (it depends on the product code) or straightening and
then is cut to length. The final products are temporarily placed to the finished product area
and finally are loaded and transferred to the customers.

On the other hand, bars potentially need to go through a two-stage production process. A
bar can be cut to length on shearlines or be dispatched as mill lengths regarding the order.
The next job after cutting in size is either to dispatch the bar for shipping or threading and
coupling. After finishing the latter procedure, the bars can be shipped or proceed to the final
stage that is of bending. Finally, the products are temporarily placed to the finished product
area and finally are loaded and transferred to the customers.

In the above figure there are three different types of trailers like Red, Yellow and Green, in
a sense they correspond to the production cycle of BRC. The stock is piled in the Red
trailers. Production transforms the stock into products which are placed by cranes in the
“finished product area” (green block in the layout diagram). In the yellow trailers, the various
orders (batches) are fulfilled by placing the various finished products that these products are
composed of. Scanning takes place at this phase. This means the product is given a time
that was scanned in the yellow trailers. When the order is complete then the trailer becomes
green, which means that the order can be shipped.

D5.2 Robust and energy- aware planning and scheduling

69

Although the company has a substantial processing capacity there is lack of system to
organise the production plan. In the current processing system, the operator of each crane
has a list of products that need to be moved but not an "optimised" order to do that. The
principle in general suggests placing at the bottom of the lay down area the straight bars,
bent items are going next and small links at the very top. Since there is no picking system,
the positioning and tracking of products/orders is rather problematic. While crane operators
are looking for some products, they move other finished products around. As a result, a
product might be under a lot of items when the operator is trying to locate it and that causes
major delays.

The machines' idle is mainly caused by the delays of cranes and the lack of feasible
schedules. The processing of a product might have finished in some station but there might
be a further delay due to the shortage of cranes. Thus, the machine remains idle at this
point. Another issue is the lack of data about the time that a crane needs to move a product
inside the production. BRC will install some sensors to give time stamps when the crane
collects an item.

We focus on bay 3, and more precisely on the flow shop scheduling problems for both coil
and bar area. Given the orders in a specific time horizon, our goal is to find the optimal
schedule with respect to specific Key Performance Indicators (KPIs). In our case we will try
to minimize the makespan Cmax and the Total Lateness Li of the jobs that are tardy. Those
KPIs are encoded as follows:

• Makespan (Cmax): one of the most common objective criteria. Makespan is the
maximal (or latest) completion time of any job. The makespan is defined as max
(C1,...,Cn) where Ci is the completion time on the last machine for job i. With this goal
the optimization method tries to finish each job as soon as possible. A minimum
makespan usually implies a good utilization of the machine(s).

• Maximum Lateness (Lmax): The Maximum (Total) Lateness is a measure that is quite
often whether the company has very tight due dates in compare with the release and
processing times. The maximum lateness of a job i in a schedule is the difference
between its completion time Ci minus its due date di (Li = Ci - di) and is defined as
Lmax = (L1,....,Ln). In fact, if a job is completed before its due date, its lateness can be
negative. So this criterion measures the worst violation of the due dates. If the
company allow tardy jobs after paying "something like a penalty e.g., complaints by
the customers or a clause" then the model is more flexible but also more complex
from computing time perspective since there are more possible combinations.

5.2 Literature Review

Over the last fifty years a considerable amount of research effort has been focused on
deterministic and stochastic scheduling. In our case we will focus on deterministic Flow Shop
problems. The number and variety of models considered is astounding. The FSP is one of
the most complex scheduling problems and finding an optimal solution for real size instances
in a reasonable amount of time is difficult both in practical and theoretical terms.

The main reasons that increase the computational complexity are the lateness tolerance (so
tardy jobs are allowed) and the scale of the problem itself. Sometimes the company has
some tight orders' due date so it's inevitable to avoid the job lateness. In the above case our
objective is to minimize as much as possible the lateness of tardy jobs or the convex
combination with the makespan criterion. Flow shop problems have been studied

D5.2 Robust and energy- aware planning and scheduling

70

extensively under exact and/or approximation methods using heuristics and metaheuristics
with a variety of optimization criteria (Badri, 2019; Emmons and Vairaktarakis, 2012; Hsu et
al., 2010; Li and Ierapetritou, 2007; Mahale, 2017; Ovacik and Uzsoy, 2012; Ramya and
Chandrasekaran, 2013.)

An MIP model which has many aspects of our case (Unal et al., 2020) and mainly lag times
between jobs. Due the shortage of data, about transportation lag times via cranes, we
omitted this parameter (on the previous deliverable 5.1) however we can be compatible with
this requirement on this phase. Another approach which is quite smart with a good
performance is a decomposition method using mixed-integer and constraint programming
(Harjunkoski and Grossmann, 2002). Constraint programming (CP) tend to perform very
well in flow shop scheduling problems as it gives good feasible solutions in a short amount
of time. Scheduling problems can naturally be decomposed into assignment and sequencing
subproblems. So, the authors' strategy relies on either combining mixed-integer
programming (MILP) to model the assignment part and constraint programming (CP) for
modelling the sequencing part.

To the best of our knowledge the most relevant previous work appears in (Benda et al.,
2019). The authors proposed an elegant methodology for solving large flow shop scheduling
instances. The authors proposed a tree-based priority rule in terms of a well-performing
decision tree (DT) for dispatching jobs. The proposed DT relies on high quality solutions,
obtained using a constraint programming (CP) formulation. Novel aspects include a unified
representation of job sequencing and machine assignment decisions, as well as the
generation of random forests (RF) to face overfitting behaviour.

5.3 Model and/or Solution method (Demonstration)

The problem that we encounter is a Flexible multistage flowshop problem with machine
dependent setup times. However, we have imposed different additional aspects in our model
to imitate the real situation as accurate as possible. This means that there are some
restrictions regarding the different products. For example, we do not allow a 'coil' product to
be in a stage where bars are being processed. Another factor prohibits any job to go from
one machine to another if these are part of the set of 'non-existing' paths. This feature
reflects the fact that we cannot schedule a job to be processed between an automated and
a manual machine. The difference in the current model in compare with the previous one
lies on the fact that the cranes' times are incorporated. Due to shortage of real data this
modification is on a beta version but it captures with a more realistic way the BRC's
production line. At this phase the cranes' movement are treated as parameters which
influence the job assignments on the different machines. The cranes re positioning are
beyond the scope of the current model as it assumed that every time a crane is needed it's
available. An extension of the model can be explored in more depth in future research.

 5.3.1 Notation
At this section we present the basic notation that will be used in our optimization model. We
note that each order has several different jobs that is required, namely every job in our case
could be a specific product (i.e., a product with a Shape Code which may denote a bar with
diameter Φ = 12 mm and 4 m length etc.). The factory receives the orders from the
customers given a unique order ID to track the jobs that compose an order. The notation
has evolved so as to capture the crane times as well.

D5.2 Robust and energy- aware planning and scheduling

71

D5.2 Robust and energy- aware planning and scheduling

72

5.3.2 Assumptions

After consultation with BRC people in charge we will create a deterministic model which
captures the essential structure of Bay 3. With regards to maintenance, there are some
historic data in paper format. Currently there is no periodic planning, and the maintenance
is based on empirical rules. However, BRC will apply in the future a periodic maintenance
plan based on the specifications of each different machine. So, at this phase we consider
the maintenance as input, and we incorporate this aspect by a parameter providing whether
the machine is available or not. The assumptions made for the development of the present
MIP are as follows:

• All jobs are available at the start of time horizon

• All jobs follow the same predefined order of stages

• No preemption/interruption is allowed

D5.2 Robust and energy- aware planning and scheduling

73

• No job can be processed by more than one machine at the same time and no
machine. can process more than one task at the same time (i.e., job slitting is not
allowed)

• There should be no waiting time between consecutive job

• Processing time is independent of the schedule

• The machines are parallel unrelated which implies that the machines are not uniform
and might have different processing and setup times for the same product

• If a product is flagged as finished, then it cannot be processed again. So, reproduction
is not allowed

• At any time a crane is needed is available and no re-positioning time is taking into
consideration

5.3.3 Mathematical Formulation

In this section we present our Mixed Integer Quadratic Programming (MIQP) for bay 3. We
note that at every stage the factory can process only a specific set of jobs. There are three
stages 𝑠 ∈{1,2,3} and three different kind of jobs i ∈{𝑐𝑜𝑖𝑙,𝑐𝑢𝑡𝑡𝑖𝑛𝑔,𝑏𝑒𝑛𝑑𝑖𝑛𝑔}. We know in
advance that the job 'coil' is processed in stage s=1, the job 'cutting' is processed in stage
s=2 and finally the job 'bending' at stage s=3. To be consistent with the factory's production

line we constructed the set �̂� whose members are all the feasible combinations of jobs and
machines.

After discussions with BRC we established as criterion a convex sum of makespan and the
total lateness of tardy jobs, see (5.1). As we can observe to incorporate the crane
movements we need to "jump" from the Mixed Integer Linear Programming to a Mixed
Integer Quadratic Programming. The main component of this model is the fact that the crane
movements can affect the job assignments among the machines. The challenge is that every
time the model should be able to know the starting and the ending point of the crane. The
decision for a job assignment on a machine requires the investigation of all the potential
movements for feeding and unloading this machine. The idea itself hides something that is
not linear however we can linearize it using different methodologies.

We define Ymi = 1 if job i is assigned on machine m. The set of constraints (5.2) ensure that
every job is assigned to a machine at each stage, respecting the relationship connecting
jobs to stages, as mentioned before the mathematical model. Constraints (5.3) link the
makespan decision variable with the completion time of the last job to finish its processing.
The next four sets of constraints (5.4) - (5.7) are related with the completion time of a job.
More precisely constraint (5.4) refers that the completion time of a job i in a stage s should
be at least the summation of release date, the processing time that the job needs to be done
and the machines' setup time. The next constraint (5.5) guarantees the precedence
sequence where each job cannot start its processing at stage s before it finishes at stage s-
1. This set of constraints be active only for those jobs which need cutting and bending
operations.

D5.2 Robust and energy- aware planning and scheduling

74

The next constraint (5.5) guarantees the precedence sequence where each job cannot start
its processing at stage s before it finishes at stage s-1. This set of constraints be active only

D5.2 Robust and energy- aware planning and scheduling

75

for those jobs which need cutting and bending operations. The unloading time is calculated
in the same manner as in the previous constraint set.

The next two set of constraints (5.6) - (5.7) prevent any two jobs from overlapping in a
common machine. The difference of completion times between job i, which precedes job �́�
should be at least the setup time plus the processing time of the first plus the loading and
unloading times. From these two sets of constraints only one set will be active and the other
will be redundant. At this point a small example could be helpful for the reader. First, we
remind that the 𝑥𝑖𝑖′𝑠 = 1 if job 𝑖 precedes job 𝑖′. We can observe that we do not need the
machine index m in the 𝑥𝑖𝑖′𝑠 decision variables because the nature of the constraints and
the relationship that exist between 𝑦𝑚𝑖 and 𝑥𝑖𝑖′𝑠 , hence these restrictions make sense only
when we have jobs in a common machine. Let's assume that job job 𝑖 precedes job 𝑖′on

machine m at stage s so 𝑦𝑚𝑖=1, 𝑥𝑖𝑖′𝑠 =1. If we substitute these values in the above
constraints, we will take:

We can check that the first constraint implies that the starting time of job 𝑖 ́(𝑐�́�𝑠 − 𝑇𝑚�́�
𝑝 − 𝑇𝑚

𝑠 −

 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) is at least the completion time of job i. However, the
second constraint is redundant. So, the initial assumption which job i precedes 𝑖 ́is hold.

Forbidden assignments are specified in (5.8), where 𝐵 ̂ is a set of forbidden (job, machine)
combinations. Using this constraint, we ensure that every job is going to be processed in
the correct stage. Similarly, constraint (5.9) prohibits any job i to go from machine 𝑚 𝑡𝑜 𝑚′ if
these are part of the set of non-existing processing paths �̂�.

Furthermore, constraint sets (5.10) - (5.11) referred to the lateness and tardiness of a job.
In more detail, constraints (5.10) calculate the lateness of a job and specified only the
positive lateness as tardiness (𝐿𝑖=max {𝑐𝑖𝑠− 𝑇𝑖𝑑 , 0 }. Constraints (5.11 - 5.12) links the
lateness and tardiness, namely if and only if, lateness is greater than zero (𝐿𝑖>0), then the
job is tardy Ti = 1. Finally, the next constraint will reduce the search space by adding some
logical cutting plane. Constraint (5.13) reduces the search domain by making sure that the
total processing time of the jobs on a machine will fit between 1) the maximum due date
subtracted with the shortest processing and setup times of all later stages, and 2) the
minimum release date plus the shortest processing times of all earlier stages. Finally,
constraints (5.14) ensure the integrallity constraints and the non-negativity as well.

5.4 Computational Results

We now present a limited set of computational results from the application of our MIP on
some randomly generated instances. Note that most computational studies in the literature
are dominated by heuristic methodologies.

D5.2 Robust and energy- aware planning and scheduling

76

We performed all tests on a machine with Intel(R) Xeon(R) E5-2650 v2 2.6 GHz, 16 GB
RAM, Windows 2007, using GUROBI solver. We want to emphasize on the statistics as the
scale of the instances raise. Due to shortage of real data, we created batches of test
instances which consist of 10 problems randomly generated. We fixed the number of
machines as the production line of Bay 3 work with, and we investigate how the
mathematical formulation reacts while we increase the number of jobs in relationship the
objective goal. The percentage near the solution time is the proportion on how many
problems were solved within the time limit condition which is 30 minutes in our case.

Table 15: Instances' solution times 1

We can see every time we add two extra jobs the complexity is increased, and the solution
time tends to grow and the percentage of solved problems within the time limits seems to
deescalate. In addition, we observe that the combination of makespan-lateness jobs is the
most computational expensive case having big solution times and small percentage of
solvability.

D5.2 Robust and energy- aware planning and scheduling

77

6. Automotive Manufacturing: Pilot Case by CONTINENTAL

6.1 Introduction

Continental is major manufacturer for automotive parts that are used in the assembly of
dashboard shells. Key decision areas and pain points for the operation managers and
production line supervisors are the following:

a) generation of static schedules for a given set of production orders and available
resources considering a planning horizon of multiple days and various operational
constraints,

b) reactive re-scheduling of the master plan as new input information arrives (e.g. new
urgent orders) based on the current status of the production lines, and

c) integrated scheduling of maintenance activities.

The part of the production line examined in the context of FACTLOG consists of two stages.
The first stage is preassembly subline that consists of 5 process steps, followed by one
buffer step. Afterwards, the second stage contains 18 assembly process steps. Each
process step is performed by one or more machines that can be seen as a workstation. All
jobs follow the same routing through each line (there is no flexibility). Thus, schedules can
be determined at the level of the lines and not at the level of each individual workstation. No
internal buffers are considered between workstations, and there is no parallel processing.
Change of type of parts processed in the lines is followed by a setup time of one or more
workstations. The transportation times for the movement of parts from one workstation to
the next is considered negligible.

The above production setting can be modelled as a multi-stage flow shop scheduling
problem (FSSP) with resource constraints (e.g. semi-finished products, raw materials etc).
All products follow a specific processing flow across multiple processing stages that may
consist of one or multiple workstations. In a flow shop environment, there is a set of
production orders (or jobs) that must be completed. Each order refers to a batch of products
with similar characteristics and consists of several sequential operations that correspond to
the processing of a job on every processing stage. The job size, resource consumptions, bill
of materials and due dates are known. Each operation should be scheduled on specific
workstation and no pre-emption / interruption is allowed. The processing times and the setup
times (if needed) per operation on each workstation are known. The goal is to produce a
schedule that minimizes the completion time of the latest job (makespan), followed by the
total job tardiness (delay from the deadline date).

Apart from resource and other operational constraints, another important dimension is the
scheduling of maintenance activities. It is important to generate maintenance plans that will
not create long delays on production orders with very tight deadlines and overall to minimize
the negative impact of downtimes on the overall production schedule. Therefore, it is
essential to treat the production and maintenance scheduling as integrated problems.
Assuming that maintenance windows at specific machines are provided either from a
predictive or preventive maintenance module, the aim is to schedule all production orders
as well as to decide when the best time is to perform the machine maintenance activities.

In this project, a Constrained Programming (CP) approach has been adopted for modelling
and solving this integrated 2-stage Flow Shop Scheduling Problem with Resource
Constraints and Maintenance Windows. The optimization model takes as an input the

D5.2 Robust and energy- aware planning and scheduling

78

planning horizon, the set of production orders to schedule, the available resources and the
windows to perform maintenance activities. On return, it provides the optimal or near optimal
production and maintenance schedules.

The core functionality provided to the human planners in this project is the ability to generate
static plans and perform what-if scenarios for maintenance activities. For example, the
planner can generate plans for different sets of production orders, different resource
availability and different processing times and production volumes. The human planner can
generate plan with different maintenance windows or impose specific maintenance tasks.

As described earlier in this report, the production scheduling engine can be accessed via a
Restful API that accepts requests and delivers responses using Hypertext Transfer Protocol
(HTTP) and JSON text format for data exchange. The input and output protocol and the
format of the JSON files are described in Deliverable 5.1. The production schedules
produced in the output can be also depicted for further evaluation by the associated
simulation tools.

Although it has not been tested and validated in this round of computational experiments,
we have also developed during this project the ability to update a given baseline master plan
as dynamic events occur. The dynamic events can be new urgent orders and/or machine
breakdowns. Whenever the planner applies a dynamic event and provides the state of the
master baseline plan (i.e. production orders completed and in progress), the optimization
engine produces a new re-optimized plan. This functionality has not been tested with real
production data given the difficulty to maintain manually the current state of the production
lines by the human planners.

Below, Section 6.2 provides a brief overview of the literature on flow shop scheduling
problems with resource constraints as well as on integrated shop scheduling problems with
maintenance planning and scheduling. Section 6.3 describes in detail the optimization
model. Finally, Section 6.4 provides some computational experiments on synthetic
benchmark data sets as well as real production data.

6.2 Literature Review

There is a huge literature on shop scheduling problems and various exact and heuristic
approaches have presented and tested on well-known benchmark data sets for a wide
variety of problem variants with various mixes of constraints and (multi-)objective functions.
We refer interested readers to the recent survey paper of Komaki et al. (2018) on Assembly
Flow Shop Scheduling problems. Various papers also propose models and algorithms for
problems with resource constraint; however, the literature in this domain is less organised.

Overall, there are 5 families of resources, namely renewable resources, non-renewable
resources, work-in-progress buffers, bill of materials and tooling resources. The most
common case of renewable resources are utility resources (e.g. electricity) that are
consumed from the machines during their operation. Often both soft and hard limits are
imposed on the usage of utility resources. Non-renewable resources are typically used to
describe material resources that are consumed and/or produced during job operations.
Work-in-Progress buffers are intermediate capacity buffers and describe constraints that
exist before/after machines. These buffers are used to hold jobs when they cannot be
directly processed from the next machine. Finally, tooling constraints are used to describe

D5.2 Robust and energy- aware planning and scheduling

79

limited capacity renewable resources that are occupied by tasks during their execution, and
they are freed once the processing finishes. In practice, this kind of resources can be used
to describe expert personnel that is required to operate specific machines or to execute
specific tasks, or special equipment that is limited in the shop floor.

Most shop scheduling problems studied in the literature assume unlimited capacities and
work-in-progress buffers, and therefore, no waiting is imposed to the execution of any
operation. By adjusting the size of buffers one can enforce the blocking of the execution of
the operations, and hence, cause a dramatic increase to the makespan. Blocking constraints
and limited capacity buffers for the Flow Shop Scheduling Problem (FSSP) appear in the
work of Trabelsi et al (2012). In this paper, a continuous production shop floor is assumed
with multiple stages, while heuristic and metaheuristic algorithms are proposed for the so-
called FSSP with mixed blocking constraints. Mascis and Pacciarelli (2002) uses the Job
Shop Scheduling Problem (JSSP) to study blocking constraints imposed by zero capacity
intermediate buffers. In a more generic fashion, Brucker et al. (2006) tries to organize the
possible buffer options and also provides essential definitions and disjunctive graph
modifications for a more efficient representation of the JSSP variant. Yaurima et al. (2009)
studies a hybrid FJSSP problem with unrelated machines, sequence dependent setup times
and limited buffers inspired by a television assembly shop floor. Lastly, Belaid et al (2012)
study a two machine Flexible JSSP with limited capacity temporary buffers between
production stages, inspired by a shampoo industry and provide heuristic and metaheuristic
approaches for solving the problem. To our knowledge literature regarding blocking
constraints on Flexible JSSP with parallel machines are very limited. Aschauer et al (2017,
2018) study Flexible JSSPs with no-wait constraints inspired by a hot rolling mill application,
while Groflin et al (2011) develop a metaheuristic algorithm for a similar problem.

In recent years, shop scheduling integrated with maintenance planning and scheduling has
received a lot of attention. Many different types of maintenance have been considered,
including among others PM (Preventive Maintenance) RTFM (Run to failure maintenance)
CBM (Condition-based maintenance), Corrective Maintenance (CM), TBPM (Time-based
Preventive Maintenance) and RCM (Reliability centered Maintenance). In cases of
preventive maintenance various stochastic aspects has been modelled and many different
policies has been tested. Assuming a deterministic setting, one approach that seems to be
effective is to consider a priori maintenance windows for fixed duration maintenance
activities. These windows and the related breakdown probabilities can be derived via
supervised machine learning models based on historical data. In addition, simulation models
can be used to evaluate the generated schedules.

The table below provides a summary of the literature for integrated shop scheduling and
maintenance planning.

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Zandieh et
al (2017)

Flexible
Job Shop

Basic &
Preventive
Maintenance

YES Thresholds for the
machine
degradation
dictate the type of
maintenance
activity.
Schedules are
evaluated using
simulation

Makespan Sigmanormal
functions for
maintenance
duration.
Sigmoid
distributions
for the shock
events

Metaheuristic

D5.2 Robust and energy- aware planning and scheduling

80

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Perez-
Gonzales
et al.
(2020)

Flow Shop Time-based
Preventive
Maintenance

NO Resumable-non-
resumable
maintenance
activities. Periodic
and deterministic
maintenance
activities

Makespan,
Lateness

- Exact (MILP)

Branda et
al. (2020)

Flow Shop Preventive &
Corrective
Maintenance

NO - Makespan,
Earliness-
Tardiness

Randomized
failure time of
a machine
that follows
Weibull
distribution

Genetic
Algorithm

Dong et al.
(2020)

Job Shop Preventive
Maintenance

NO Fixed and Flexible
maintenance
activities. Single
machine

Makespan,
Total Flow
Time

- Exact (MILP)

Shijin and
Jianbo
(2010)

Flexible
Job-Shop
Schedulin
g

Preventive
Maintenance

NO Deterministic
maintenance time
windows. Two
types of
resources are
incorporated to
constraint the
ability of
maintaining more
than one machine
simultaneously.

Makespan,
Total
workload,
Critical
machine
workload

- Filtered beam
search

Cui et al.
(2017)

Job Shop Time based
Preventive
Maintenance

NO Resumable-non-
resumable
maintenance
activities

Makespan - Branch and
Bound +
Heuristic

Hadi and
Mehrdad
(2015)

Flexible
Job Shop

Preventive
Maintenance

YES Discrete failure
rates.
Maintenance time
is constant.
Minimum
availability
constraint

Number of
tardy jobs

- SA + Monte
Carlo
Simulator

Azadeh et
al (2015)

Open
Shop

Preventive
Maintenance

NO - Multiple
(Makespan,
Total
Tardiness,
Earliness,
Machine
availability)

Poisson
distribution is
used to
calculate the
time required
for preventive
maintenance.

MOPSO +
NSGA II
metaheuristics

Moradi et
al (2010)

 Preventive
Maintenance

NO Fixed
maintenance
activities on
specific time
periods.
Everything else
seems
deterministic

Makespan - Preventive
maintenance
and learnable
genetic
architecture

Gholami et
al (2009)

Hybrid
Flow shop

Preventive
Maintenance

YES Machines suffer
only breakdown
events with
stochastic
intervals.

Makespan Exp-rand
function is
used to
calculate
breakdown
intervals and
breakdown
times.

Random key
genetic
algorithm

Naderi et
al (2009)

Job shop Preventive
Maintenance

NO Various
maintenance
policies

Makespan - Genetic
Algorithm and
Simulated
Annealing

D5.2 Robust and energy- aware planning and scheduling

81

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Ehram et
al (2010)

Flow Shop Preventive
Maintenance

YES Thresholds for
machine
degradation level.
Metaheuristic is
used for
generating
schedules that
are evaluated
using a simulator

Makespan Shock events
follow a
poisson
distribution,
amount of
degradation
follows an
exponential
distribution,
recovery time
follows
lognormal
distribution

Hybrid
simulated
annealing-
tabu search

Yu and
Hee (2021)

Flow Shop Preventive
Maintenance

NO Proportional
Processing times

Total
Completion
Time,
Maximum
Lateness

- Exact (MILP)

Logendran
and
Talkington
(1997)

Job shop
with
parallel
machines

Preventive
and Corrective
Maintenance

YES Two maintenance
policies.
Schedules are
simulated

Mean time for
machine
failures
follows an
erlang
distribution.
Repair times
are also within
a range of
values

-

Ruiz-
Torres et
al (2017)

Job Shop Repair
Maintenance

YES* Deteriorating
processing times
after each job.
Maintenance
activities restore
machine
performance

Makespan - Heuristics

Shijin and
Ming
(2014)

Two-stage
hybrid flow
shop

Preventive
Maintenance

YES Start times of
preventive
maintenance
activities are
unknown as well
as their number.
Durations are
fixed, availability
uses a
distribution.

Bi-objective
(Makespan
+ Machine
availability)

- MOPSO +
NSGA II
metaheuristics

Bajestani
et al (2014)

Flow Shop Preventive
Maintenance

YES Machine
deterioration
states are
defined, and the
transitions follow
markov chain
rules

Maintenanc
e cost + lost
production
cost due to
late orders

Random-
based
transitions
between
machine
states

MDP for the
maintenance
plan and MIP
for the
production
scheduling

Ben Ali et
al (2011)

Job-shop
scheduling

Preventive
and Corrective
Maintenance

YES Maintenance is
applied based on
2 types of tasks
(periodic and
workflow based)

Multiple
(Makespan,
Total
maintenanc
e cost)

- Genetic
Algorithm

Rajkumar
et al (2010)

Flexible
Job Shop

Preventive
Maintenance

NO Start and end
times of
maintenance
activities as
decision variables

Weighted
sum
function of
makespan,
workload,
total
workload

- GRASP

Yahong et
al (2014)

Flexible
Job Shop

Preventive
Maintenance

NO Maintenance time
windows

Makespan - Heuristics

D5.2 Robust and energy- aware planning and scheduling

82

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Rahmati et
al (2018)

Flexible
Job Shop

Preventive
and Corrective
Maintenance

YES Machine status is
checked on
specific intervals,
maintenance
actions can be
preventive or
corrective.
Thresholds
control the
availability of the
machine.
Schedule is
evaluated through
simulation.

Multi-
objective (
Makespan,
maintenanc
e cost
function,
system
reliability
function)

Shock events
are
stochastically
applied and
degrade the
status of the
machine.
PM/CM
activity
durations are
also
stochastically
calculated

4 multi-
objective
simulation
based
optimization
algorithms
(MOBBO,
PESA,
NSGAIII, and
MOEAD)

Table 16: Literature review for integrated shop scheduling and maintenance planning

6.3 Model formulation and solution method

6.3.1 Notation

The examined 2-stage FSSP with resource constraints and maintenance activities is a
special case of the more generalized FJSSP with resource constraints which is described
in the rest of this section. Let a set of jobs 𝐽 = 1, … , 𝑙, set of available machines 𝑀 =
 {1, … , 𝑚}, a set of tools 𝑇 = {1, … , 𝐿𝑇}, a set of utility resources 𝑈 = {1, … , 𝐿𝑈}, a set of
arbitrary resources 𝑅 = {1, … , 𝐿𝑅} and a set of WIP Buffers 𝑊 = {1, … , 𝐿𝑊}. We define two

dummy operations 𝑖𝑢
∘ and 𝑖𝑢

∗ for each job 𝑢 ∈ 𝐽, which correspond to the first and the last
operations of the job, respectively. Each job 𝑢 consists of a set of operations 𝑂𝑢, including
the dummy operations. There exists a set Ω that includes all the operations of the problem,

Ω = ⋃ 𝑂𝑢
𝑙
𝑢=1 . Let 𝑛 = |Ω| denote the total number of operations. Each operation 𝑖 ∈ Ω can

be executed on a set of available machines 𝑀𝑖 ⊆ 𝑀 and has a processing time 𝑝𝑖,𝑘, where

𝑘 ∈ 𝑀𝑖. Each operation is executed once by a single machine, the machines can execute
only one operation at a time and no pre-emption is allowed. During the execution time that
machines execute operations, they may consume more than one utility resource. The
flexibility 𝑓𝑥 of the problem can be defined as a metric of the degrees of freedom regarding

the assignment of operations to different machines, and it can be calculated as
1

𝑛
∑ |𝑀𝑖|

𝑛
𝑖=0 .

Each operation 𝑖 ∈ Ω can be associated with two resources 𝑅𝑒𝑞(𝑖) and 𝑃𝑟𝑜𝑑(𝑖) that
correspond to the resources required and produced by the operation respectively, while the
tool associated to the operation is denoted by 𝑡(𝑖). Note that in cases where there are no
required/produced resources or a needed tool for an operation 𝑖, the values of the
corresponding association vectors are set to -1. To reduce the complexity of the problem
we assume that the produced and/or required resource quantity per operation is fixed

(𝑙𝑜𝑡𝑆𝑖𝑧𝑒). Each utility 𝑈𝑘 ∈ 𝑈 has a hard consumption limit denoted by 𝑈𝑘
̅̅̅̅ . For a machine

𝑘 ∈ 𝑀, 𝑢𝑖(𝑘) is a binary variable that depicts whether or not machine 𝑘 requires utility 𝑈𝑖.
For simplicity we assume that each machine exhibits a unitary consumption per utility during
each operation. The size of the limited capacity buffer of machine 𝑘 ∈ 𝑀 is denoted by

𝑙𝑐𝑏(𝑘). For each tool 𝑘 ∈ 𝑇 has a hard upper bound is defined, denoted by 𝑇𝑘
̅̅ ̅, that

corresponds to the maximum number of instances of the tool that can be used in parallel.

Starting inventory of a resource 𝑘 ∈ 𝑅 is denoted by 𝑅𝑘
𝑠𝑡𝑎𝑟𝑡. Finally, the associated work in

progress buffer of a resource 𝑘 ∈ 𝑅 is denoted by 𝑤𝑖𝑝(𝑘).

D5.2 Robust and energy- aware planning and scheduling

83

Definition A. A solution 𝑠 is defined as a pair (𝛼, 𝜋), where 𝛼 is a vector that represents the
assignment information of operations to machines and 𝜋 is a table of vectors that represents
the sequence of operations executed at each machine.

More specifically, let 𝛼 = {𝛼(𝑖), ∀𝑖 ∈ Ω}, where 𝛼(𝑖) ∈ 𝑀𝑖, and 𝜋 = {𝜋𝑘, ∀𝑘 ∈ 𝑀}, where 𝜋𝑘
denotes the permutation of operations processed by machine 𝑘. For the sake of completion,

every permutation 𝜋𝑘 starts and ends with two dummy operations 𝑚𝑘
∘ , 𝑚𝑘

∗ ∈ that denote the

start and the end operations of machine 𝑘, respectively. Note that 𝑀𝑚𝑘
∘ = 𝑀𝑚𝑘

∗ = {𝑘} and

𝑝𝑚𝑘
∘ ,𝑘 = 𝑝𝑚𝑘

∗ ,𝑘 = 0, for all 𝑘 ∈ 𝑀. Note that given 𝜋, one can derive the assignment vector 𝛼,

but for the sake of simplicity 𝛼 is also included in the definition of a solution.

We use 𝑝𝑚𝑖 (and 𝑠𝑚𝑖) to denote the machine predecessor (and successor) of operation 𝑖
assigned to machine 𝛼(𝑖) in a solution 𝑠(𝛼, 𝜋). In the same manner, we use 𝑝𝑗𝑖 (and 𝑠𝑗𝑖) to
denote the single job predecessor (and successor) of operation 𝑖.

Definition B. The cost of a solution 𝑠, namely the makespan of the schedule 𝐶𝑚𝑎𝑥
𝑠 , is defined

as the maximum completion time of all operations in Ω.

6.3.2 Constraint Programming Formulation

CP has been successfully applied for solving various highly constrained and large-scale
scheduling problems. We refer interested readers to the works of Goel et al (2015),
Rasmussen et al (2017), and Unsal and Oguz (2013). The input of a CP model is a set of
decision variables, a finite set of alternative values as a domain per decision variable and a
set of constraints that must be satisfied. A CP solver works by enumerating feasible
solutions of the problem using branching algorithms. During this process, it also tries to
decrease the domain cardinality of each decision variable by propagating through the
constraints. Constraint propagation identifies values or combinations of values across
multiple decision variables that cannot be part of a feasible solution, and therefore, can be
excluded from the domain sets of the corresponding decision variables, which can lead to
branch pruning (Laborie et al., 2018).

Specifically, for scheduling applications CP models use interval variables. This type of
variable is a natural way of describing a task or activity. Interval variables have four
attributes: 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑 and 𝑆𝑖𝑧𝑒. 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡 indicates if the interval variable is
included in the solution or not, 𝑆𝑡𝑎𝑟𝑡 and 𝐸𝑛𝑑 denote the start and the end time of the interval

variable, i.e., the start and the end time of the task, while 𝑆𝑖𝑧𝑒 refers to the size of the interval,
i.e., the length of the task.

In the CP Optimizer the notion of sequence interval variables is also defined, which are sets
of interval variables that represent an ordering of the included interval variables. Specific
constraints are also introduced by the 𝐶𝑃 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 to handle sequence interval variables.
In our implementation the following constraints regarding sequence interval variables are
used:

• 𝐵𝑒𝑓𝑜𝑟𝑒(𝑎, 𝑏, 𝑐), within a sequence variable 𝑎, interval variable 𝑏 should end before
𝑐 starts.

In the following we include all expressions and functions used to deduce the status of an
interval variable in the working solution of CP.

D5.2 Robust and energy- aware planning and scheduling

84

• 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑎), is a boolean expression that returns the presence status of an
interval variable 𝑎 in the solution.

• 𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑎), is an integer expression that returns the start time of an interval
variable 𝑎 in the solution.

• 𝐸𝑛𝑑𝑂𝑓(𝑎), is an integer expression that returns the end time of an interval variable
𝑎 in the solution

To further simplify the modelling of resources, we again adopt the notation used by the ILOG
CP Optimizer. More specifically, the CP Optimizer uses the notion of cumulative function
expressions to model discrete cumulative functions over time. The CP Optimizer introduces
several constraints on interval variables as well as the cumulative function expression
themselves, to describe the contribution of each variable but also any constraints regarding
the values of the cumulative function itself over specific time intervals. In the CP model
implemented in this work, the following constraints are used:

• 𝑃𝑢𝑙𝑠𝑒(𝑎, ℎ), i.e., an interval variable 𝑎 contributes ℎ to the corresponding cumulative
function during the execution time window of 𝑎

• 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑎, ℎ), i.e., an interval variable 𝑎 issues a permanent contribution of ℎ to
the corresponding cumulative function at the start of 𝑎

• 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝑎, ℎ), i.e., an interval variable 𝑎 issues a permanent contribution of ℎ to
the corresponding cumulative function at the end of 𝑎

• 𝐴𝑙𝑤𝑎𝑦𝑠𝐼𝑛(𝑅, 𝑎, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥), i.e., the value of the cumulative function 𝑅 during the time
that interval variable 𝑎 is active should be greater or equal to 𝑣𝑚𝑖𝑛 and less or equal

to 𝑣𝑚𝑎𝑥

In our implementation, for each operation 𝑖 a decision interval variable 𝜏𝑖 is defined. The
alternative execution options (modes) of an operation 𝑖 on a machine 𝑘 ∈ 𝑀𝑖 are also defined
as decision interval variables 𝜙𝑖,𝑘. For these variables a constraint is defined such that the

𝑆𝑖𝑧𝑒 attribute of each 𝜙𝑖,𝑘 is equal to the processing time 𝑝𝑖,𝑘 of 𝑖 on machine 𝑘. Tο accurately

calculate the waiting times within the limited capacity buffers within the machines, for every

available mode of an operation 𝑖 on a machine 𝑘 ∈ 𝑀𝑖, another decision interval variable 𝜙𝑖,𝑘
𝑏

is defined. The maximum capacity of the limited capacity buffer of a machine 𝑖 is denoted
by 𝑙𝑐𝑏𝑖, while the cumulative function that is used to accumulate the consumption of the
buffer overtime is denoted by 𝐿𝐶𝐵𝑖. For the sake of completion, we define a set 𝜇𝑖 =
{𝜙𝑖,𝑘, ∀𝑘 ∈ 𝑀𝑖} to represent all the available execution modes per operation 𝑖, which is also

used to denote the domain set of variable 𝜏𝑖. Lastly, a sequence interval decision variable
𝜎𝑘 is defined per machine 𝑘 over the set of interval variables 𝜎𝑘 = {𝜙𝑖,𝑘, ∀𝑖 ∈ Ω}.

min 𝐶𝑚𝑎𝑥 (6.3)

subject to:

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝜏𝑖, 𝜇𝑖)∀𝑖 ∈ (6.4)

𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑗, 𝑖)∀𝑖 ∈ Ω, ∀𝑗 ∈ 𝑃𝐽𝑖 (6.5)

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝜎𝑘)∀𝑘 ∈ 𝑀 (6.6)

∑ 𝑃𝑢𝑙𝑠𝑒 (𝜙𝑗,𝑘, 𝑢𝑖(𝑘))𝑛
𝑗=1 ∀𝑘 ∈ 𝑀𝑗 ≤ 𝑈�̅�∀𝑖 ∈ 𝑈 (6.7)

D5.2 Robust and energy- aware planning and scheduling

85

∑ 𝑃𝑢𝑙𝑠𝑒 (𝜏𝑗 , 𝑡𝑖(𝑗))𝑛
𝑗=1 ≤ 𝑇�̅�∀𝑖 ∈ 𝑇, 𝑡𝑖(𝑗) = 𝑖 (6.8)

𝑃𝑢𝑙𝑠𝑒(𝜙𝑗,𝑘
𝑏 , 1) ∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (6.9)

𝐴𝑙𝑤𝑎𝑦𝑠𝐼𝑛(𝐿𝐶𝐵𝑘, 𝜙𝑗,𝑘, 0, 𝑙𝑐𝑏𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (6.10)

𝑃𝑟𝑒𝑐𝑒𝑛𝑠𝑒𝑂𝑓(𝜙𝑗,𝑘
𝑏) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝜙𝑗,𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (6.11)

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝜙𝑗,𝑘
𝑏) = 𝐸𝑛𝑑𝑂𝑓(𝜙𝑗,𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (6.12)

𝐸𝑛𝑑𝑂𝑓(𝜙𝑗,𝑘
𝑏) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝜙𝑗,𝑘

𝑏)𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑗𝑗
) ∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (6.13)

𝑆𝑡𝑒𝑝(0, 𝑅𝑖
𝑠𝑡𝑎𝑟𝑡) + ∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑃𝑟𝑜𝑑(𝑗)=𝑖  −

∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑅𝑒𝑞(𝑗)=𝑖 ≥ 0 ∀𝑖 ∈ 𝑅 (6.14)

∑ {𝑆𝑡𝑒𝑝(0, 𝑅𝑖
𝑠𝑡𝑎𝑟𝑡) + ∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗 ∈Ω|𝑃𝑟𝑜𝑑(𝑗)=𝑖 −𝑖∈𝑅|𝑤𝑖𝑝(𝑖)=𝑘

∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑅𝑒𝑞(𝑗)=𝑖 } ≤ 𝑊𝑘
̅̅ ̅̅ ∀𝑘 ∈ 𝑊 (6.15)

𝐶𝑚𝑎𝑥 ≥ 𝐸𝑛𝑑𝑂𝑓(𝜏𝑖)∀𝑖 ∈ (6.16)

The objective (6.3) refers to the minimization of the makespan. Constraints (6.4) are used
to enforce a unique selection of the available modes for the interval variable 𝜏𝑖 out of the set
𝜇𝑖. Constraints (6.5) are used to cover the precedence relations of the problem, i.e., each
operation 𝑖 can start as soon its job predecessor 𝑝𝑗𝑖 has finished. Constraints (6.6) ensure
that the interval variables included in 𝜎𝑘 do not overlap, since a machine can execute only
one operation at a time. They also ensure that each operation starts after its machine
predecessor has finished. Constraints (6.7) and (6.8) are used to accumulate the
consumption of utility and tool resources respectively. They also make sure that the upper
usage bounds are not surpassed. Constraints (6.9, 6.10, 6.11, 6.12 and 6.13) are used to
describe the usage of limited capacity buffers. More specifically, constraint (6.9) defines the
occupation of the buffer, while constraint (6.10) makes sure that at start of any activity on
the machine there are no other activities already waiting in the buffer, so that the buffer
capacity is violated. Constraints (6.11), (6.12) and (6.13) are used to calculate the start and
end times of the decision interval variables related to the limited capacity buffers. Constraints
(6.14) are used to accumulate the production and consumption of each generalized
resource, while constraints (6.15) accumulate the usage of resources on their corresponding
work in progress buffer. Lastly, constraint (6.16) is responsible for the calculation of the
makespan.

In the above model, maintenance activities are added as additional dummy jobs / production
orders with predefined release and due dates (to represent the maintenance windows).
These dummy jobs have zero processing time on all machines / workstations, except the
one that maintenance will be performed. In addition, to emulate a flow-shop environment,
𝑠𝑎𝑚𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 global constrained is used to enforce that the execution order of jobs is
maintained for all the workplaces of a particular production line.

As part of the research work performed for this project and to approach very-large scale
problem instances, the above CP approach has been also utilized within a more advanced

D5.2 Robust and energy- aware planning and scheduling

86

population-based algorithmic framework. The proposed hybrid CP algorithm uses
frequency-based learning mechanisms to detect promising regions in the solution space.
The extracted information is used to guide the CP towards finding high quality solutions in
short computational times. We benchmark our algorithm on well-known instances of the
FJSSP literature with and without resource constraints. Computational results show the
effectiveness of the proposed algorithm compared to the basic CP non-hybrid approach.
These results will be presented at the MIM Conference together with an extensive analysis
on the effect of different types of resource constraints.

6.4 Computational Experiments

6.4.1 Experiments on synthetic benchmark data sets

Initially, we assess the impact of resources constraints on the production schedules. We are
using as a test bed for our experiments benchmark data sets for the generic Flexible Job
Shop Scheduling Problem that is a generalization of the 2-stage FSSP. For this purpose, a
subset of instances of the Fattahi (2007) dataset was chosen (MFJS1 – MFJS10). A
hierarchical optimization objective was selected with the makespan as the primary objective
and the maximum flow time as the secondary objective. A single utility resource is
considered that can limit the simultaneous operation of machines of the shop floor. The
experiment is conducted in two steps. At first, an unlimited availability of the resource is
considered. In this case, all machines can operate simultaneously without any restrictions
or blockers. The CP model solved all problems optimally and the results for both objectives
are presented in Column (RC0) of Table 17. In the second step, a restriction on the maximum
allowed consumption of the resource is applied. The maximal resource limit is defined as a
linear function of the number of available machines, so that the resources availability scales
uniformly across all problem instances of the dataset. The results of the second step are
presented in Column (RC1) of Table 17.

Instances RC
0
 RC

1

Impact
(RC

1
-RC

0
)/RC

0

N M Ops. C
max

 F
t
 C

max
 F

t
 C

max
 F

t

MFJS1 5 6 15 468 2054 805 3500 72% 70%

MFJS2 5 7 15 459 2072 803 2899 75% 40%

MFJS3 6 7 18 466 2501 996 5018 114% 101%

MFJS4 7 7 21 554 3352 1253 7126 126% 113%

MFJS5 7 7 21 514 3155 1191 6930 132% 120%

MFJS6 8 7 24 634 4212 1498 9636 136% 129%

MFJS7 8 7 24 879 5912 2051 13142 133% 122%

MFJS8 9 8 36 884 6753 2311 18015 161% 167%

MFJS9 11 8 44 1055 9316 2953 29368 180% 215%

MFJS10 12 8 48 1196 11575 3425 33295 186% 188%
Table 17: Fattahi Dataset with Resource Constraints (1 Resource + Hierarchical objectives Cmax | Ft)

The last Column of Table 15 provides the % increase of both objectives when considering
limitations of resource constraints. The results show that in problems with the same number
of machines, both objectives increase as the number of operations increases. The same
effect is observed when the problem size increases (number of jobs as well as the number
of operations). Overall, we notice that even a slight limitation of the maximal resource

D5.2 Robust and energy- aware planning and scheduling

87

consumption limit (almost 20% across all problem instances), can cause significant increase
to the makespan as well as the maximum flow time that can range from 70% to 190%. This
highlights the importance of applying optimization algorithms for production scheduling at
assembly flow shops with resource constraints.

In addition to above sets of experiments, we also tested the scalability and efficiency of the
proposed CP model on very hard-to-solve Flexible Job Shop Scheduling problems. For this
purpose, we used various data sets from the literature. Table 18 summarizes the results
obtained on small- and large-scale problem instances. Clearly, the CP models (using IBM
ILOG CP Optimizer) performs exceptionally well on most common instances of the FJSSP.
It managed to match 180 optimal solutions out of a total of 252 problem instances.
Additionally, it manages to update 49 lower bounds out a subset of 178 instances, while also
recording a total of 14 new best solutions. A recorded average gap of 1.54% shows that the
CP model can calculate near optimal solutions within the time limit (3 hours in this case).

 Benchmark
Set

Number of
problem

instances

Number of
operations

Number of
machines /

workstations

 Avg. Cmax Gap (%)

BRData 10 60-300 2-8 284.6 5.87

HURData 15 15-75 5-15 1428.3 0.96

HUVData 15 15-75 5-15 1366.0 0.07

HUEData 15 15-75 5-15 1697.4 0.47

CBData 21 100-225 11-18 995.2 0.00

DPData 4 12-56 5-10 2212.1 1.87

Average Gap 1.54

Optimal Solutions 180

New Best Solutions 14
Table 18: Results on small and large scale Flexible Job Shop Scheduling Problems

6.4.2 Experiments on real data

As described earlier, Continental production floor consists of a pre-defined/fixed sequence
of process stages that is followed by all products across multiple assembly lines. Assembly
lines consist of linear sequences of machines/stations that products progress through. There
are various operational realties that needs to be considered:

• Multiple product families with different setup times (setup times based on product
family changes on the assembly line)

• Resource Constraints
o Components (raw materials) required for production or assembly operations
o Bill of materials, i.e. several semi-finished products are required for the

assembly of a product.
o Work-in-progress areas between production stages with limited capacity

• Fixed/Predicted Maintenance activities
o Fixed maintenance activities are used to describe already known (pre-

scheduled) maintenance activities that will take place as well as predicted
maintenance activities for which a time window is only given. The goal is to
schedule maintenance activities to the most convenient times for the overall
schedule.

• Due dates for production orders

D5.2 Robust and energy- aware planning and scheduling

88

We model the above assembly scheduling environment as a Multi-stage Flow-Shop
Scheduling Problem with Resource Constraints and Sequence Dependent Setup Times. Let
a set of jobs to complete (Jk), a set of sub-operations for each Job (Oij) and a set of machines
where operations are executed (Mi). Each operation can be executed on a single machine
with a known processing time (pij). The number of operations for all jobs is the same and
equal to (|M|). Finally, let operation Oik denote the execution of operation i on machine Mk.
The goal is to schedule maintenance activities (scheduled or predicted) and production
orders such that the makespan or objectives is minimized.

Like the experiments conducted earlier using synthetic data, we initially try to measure the
effect of maintenance activities and resources constraints using real sample data provided
by Continental. Such data that can organized into two main categories: static and dynamic.
Static data includes static production information (such as products, product families, setup
times, processing times) including the current shop-floor configuration (such as production
lines, production line types, workplaces, workplace types etc). Dynamic data contains
information that can be different between different invocations of the optimization module,
such as the production orders that have to be executed as well as scheduled or unscheduled
maintenance activities that have to be performed.

In the following experiment, we took a data sample with 10 production orders. These data
include maintenance activities as well as resource requirements to produce each SKU. We
experimented with the existence or not of maintenance activities as well as with the
replenishment quantities. We also assumed 3 replenishment policies per resource:

• Policy 1: 1000 units / hour

• Policy 2: 2000 units / hour

• Policy 3: 4000 units / hour

Below, Figures 15 to 28 capture the resource availabilities over time and the Gannt charts
for all combinations of replenishment policies 1, 2 and 3 as well as with and without
maintenance activities.

Figure 15: Resource availability over time for Policy 1 without maintenance activities

D5.2 Robust and energy- aware planning and scheduling

89

Figure 16: Gantt Chart considering the resource replenishment according to Policy 1 without maintenance

activities

Figure 17: Resource availability over time for Policy 1 with maintenance activities

D5.2 Robust and energy- aware planning and scheduling

90

Figure 18: Gantt Chart considering the resource replenishment according to Policy 1 with maintenance activities

Figure 19: Resource availability over time for Policy 2 without maintenance activities

D5.2 Robust and energy- aware planning and scheduling

91

Figure 20: Gantt Chart considering the resource replenishment according to Policy 2 without maintenance

activities

Figure 21: Resource availability over time for Policy 2 with maintenance activities

D5.2 Robust and energy- aware planning and scheduling

92

Figure 22: Gantt Chart considering the resource replenishment according to Policy 2 with maintenance activities

Figure 23: Resource availability over time for Policy 2 with maintenance activities

D5.2 Robust and energy- aware planning and scheduling

93

Figure 24: Gantt Chart considering the resource replenishment according to Policy 2 with maintenance activities

Figure 25: Resource availability over time for Policy 3 without maintenance activities

D5.2 Robust and energy- aware planning and scheduling

94

Figure 26: Gantt Chart considering the resource replenishment according to Policy 3 without maintenance

activities

Figure 27: Resource availability over time for Policy 3 with maintenance activities

D5.2 Robust and energy- aware planning and scheduling

95

Figure 28: Gantt Chart considering the resource replenishment according to Policy 3 with maintenance activities

The main conclusions that can be drawn from the above experiments are the following:

• Low replenishment rates cause delays in production due to very frequent resource
unavailability (see Figures 15 and 17 for Policy 1)

• Higher replenishment rates allow for continuous production without disruptions due
to raw material shortage (see Figures 25 and 27 for Policy 3)

• Maintenance activities can cause significant delays, while the impact of maintenance
is more evident as production throughput is higher (see Figures 26 and 28).

Table 19 summarizes the results obtained for each case in terms of Makespan and
throughput. An increase up to 19.42% when the highest replenishment policy is considered.
This indicates that resource constraints and scheduling of maintenance activities can cause
significant efficiency losses on production schedules. Therefore, it is very important to invest
towards integrated models and schedule simultaneously both product orders and
maintenance activities.

Policy 1 Policy 2 Policy 3

C
max Throughput C

max Throughput C
max Throughput

w. Maintenance 486833 0.85/min 313486 1.31/min 297678 1.38/min

w/o Maintenance 486833 0.85/min 310433 1.33/min 249256 1.65/min

D5.2 Robust and energy- aware planning and scheduling

96

Maintenance
Impact

0% 0.97% 19.42%

Table 19: Impact of maintenance activities for different replenishment policies

The above results have been presented at the EURO conference

Repoussis P.P., Kasapidis G., Eirinakis P. and Mourtos Y. (2021). Combined Production
Scheduling and Predictive Maintenance for PCB Manufacturing. 31th European Conference
on Operational Research conference – EURO 2021, June 11-14, Athens, Greece.

In a final set of computational experiment, we tried to assess the impact of line maintenance
activities with respect to the completion time of the schedule. Line maintenance activities
block simultaneously the use of all workstations of a production line. We focus on the same
set of production orders (see previous set of computational experiments); however, in this
case resource constraints are not considered, and we investigate three different scheduled
maintenance activity events:

• Event 1: A single pre-assembly maintenance activity

• Event 2: Two maintenance activities on the pre-assembly line

• Event 3: Two maintenance activities on the pre-assembly line and one maintenance
activity on the final assembly line.

Figure 29 shows the Gantt chart of the production schedule when no maintenance events
are considered, while Figures 30 to 32 show the resulting Gantt charts considering
maintenance Events 1 to 3 respectively. One can observe the large idle times that are
created on the lines when maintenance takes place. This is more evident when final
assembly is maintained that contains more workstations.

Figure 29: Gantt Chart of the production schedule without maintenance activities

D5.2 Robust and energy- aware planning and scheduling

97

Figure 30: Gantt Chart of the production schedule based on maintenance event 1

Figure 31: Gantt Chart of the production schedule based on maintenance event 2

D5.2 Robust and energy- aware planning and scheduling

98

Figure 32: Gantt Chart of the production schedule based on maintenance event 3

Table 20shows the makespan and the throughput of the generated schedules. We notice a
staggering 51.99% increase of the makespan in the case of Event 3, where both lines must
be maintained. The large number of workstations as well as the necessary blocking of the
entire line for the completion of this type of maintenance activity are the root causes of this
result. This highlights the need to adopt integrated production and maintenance planning
and scheduling tools.

No Event Event 1 Event 2 Event 3

C
max

 Throughput C
max

 Throughput C
max

 Throughput C
max

 Throughput

 263284 1.56/min 284752 1.45/min 311871 1.32/min 400174 1.03/min

Maintenance
Impact

0% 8.15% 18.45% 51.99%

Table 20: Impact of different line maintenance events on the completion time of the schedule

D5.2 Robust and energy- aware planning and scheduling

99

7. References

Allahverdi, A., Ng, C-T., Cheng, T. E. and Kovalyov, Y. A survey of scheduling problems
with setup times or costs. EJOR, 187: 985-1032, 2008.

Al-Qahtani, K., and Elkamel, A. (2008). Multisite facility network integration design and
coordination: An application to the refining industry. Computers & Chemical Engineering,
32(10), 2189-2202.

Al-Qahtani, K., and Elkamel, A. (2010). Robust planning of multisite refinery networks:
Optimization under uncertainty. Computers & chemical engineering, 34(6), 985-995.

Albahri, T. A., Khor, C. S., Elsholkami, M., and Elkamel, A. (2018). Optimal design of
petroleum refinery configuration using a model-based mixed-integer programming
approach with practical approximation. Industrial & Engineering Chemistry Research,
57(22), 7555-7565.

Almeida Neto, E., Rodrigues, M.A., and Odloak, D. (2000). Robust predictive control of a
gasoline debutanizer column. Brazilian Journal of Chemical Engineering, 17, 4-7.

Arabi, M., Yaghoubi, S., and Tajik, J. (2019). Algal biofuel supply chain network design with
variable demand under alternative fuel price uncertainty: A case study. Computers &
Chemical Engineering, 130, 106528

Aschauer A., Roetzer F., Steinboeck A. and Kugi A. (2017). An Efficient Algorithm for
Scheduling a Flexible Job Shop with Blocking and No-Wait Constraints. IFAC-
PapersOnLine 50(1), 12490–12495.

Aschauer A., Roetzer F., Steinboeck A. and Kugi A. (2018). Scheduling of a Flexible Job
Shop with Multiple Constraints. IFAC-PapersOnLine 51(11), 1293–1298.

Azadeh A., Farahani M., Hosseinabadi Kalantari S.S. and Zarrin M. (2015) Solving a multi-
objective open shop problem for multi-processors under preventive maintenance.
International Journal of Advanced Manufacturing Technology

Badri, H. (2019). A parallel randomized approximation algorithm for single machine
scheduling with applications to flow shop scheduling.

Bahadori, Alireza. (2014). Natural gas processing: technology and engineering design. Gulf
Professional Publishing.

Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483

Bektur, G., Sara ̧c, T. A mathematical model and heuristic algorithms for an unrelated
parallel machine scheduling problem with sequence-dependent setup times, machine
eligibility restrictions and a common server. Computers & Operations Research, 103, 46-
63, 2019.

Belaid R., T’Kindt V., and Esswein C. (2012). Scheduling batches in flowshop with limited
buffers in the shampoo industry. European Journal of Operational Research 223(2), 560–
572.

Ben Ali, M., Sassi, M., Gossa, M. and Harrath, Y. (2011) Simultaneous scheduling of
production and maintenance tasks in the job shop. International Journal of Production
Research

D5.2 Robust and energy- aware planning and scheduling

100

Benda, F., Braune, R., Doerner, K. F., & Hartl, R. F. (2019). A machine learning approach
for flow shop scheduling problems with alternative resources, sequence-dependent setup
times, and blocking. OR Spectrum: Quantitative Approaches in Management, 41 (4),
871{893. https://doi.org/10.1007/s00291-019-00567-

Benders, J.F., Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4, 238-252 (1962).

Birge, J. R. (1997). State-of-the-art-survey—Stochastic programming: Computation and
applications. INFORMS journal on computing, 9(2), 111-133.

Birge, J. R., and Louveaux, F. (2011). Introduction to stochastic programming. Springer
Science & Business Media.

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2014). Handbook on
scheduling: From theory to applications. Springer Publishing Company, Incorporated.

Branda A., Castellano D. Guizzi G, and Popolo V. (2020). Metaheuristics for the flow shop
scheduling problem with maintenance activities integrated. Computers and Industrial
Engineering

Brucker P., Heitmann S., Hurink J., and Nieberg T. (2006). Job-shop scheduling with limited
capacity buffers. OR Spectrum 28(2), 151–176.

Brucker, P. Scheduling Algorithms. Springer, 1999

Charnes, A., and Cooper, W. W. (1959). Chance-constrained programming. Management
Science, 6(1), 73-79.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision
making units. European journal of operational research, 2(6), 429-444.

Charnes, A., Granot, F., & Phillips, F. (1977). An algorithm for solving interval linear
programming problems. Operations research, 25(4), 688-695.

Cheng, C.Y., Huang, L.W. Minimizing total earliness and tardiness through unrelated
parallel machine scheduling using distributed release time control. Journal of Manufacturing
Systems, 42, 1-10, 2017.

Chinneck, J. W., & Ramadan, K. (2000). Linear programming with interval coefficients.
Journal of the operational research society, 51(2), 209-220.

Correa, J., Marchetti-Spaccamela, A., Matuschke, J., Stougie, L., Svensson, O., Verdugo,
V. , Verschae, J., Strong LP formulations for scheduling splittable jobs on unrelated
machines. Mathematical Programming, 154, 305-328 (2015).

Correa, J., Verdugo, V., Verschae, J., Splitting versus setup trade-offs for scheduling to
minimize weighted completion time. Operations Research Letters, 44:4, 469-473 (2016).

Cui W.W, and Zhiqiang L. (2017) Minimizing the makespan on a single machine with flexible
maintenances and jobs’ release dates. Computers and Operations Research

Dalei, N. N., and Joshi, J. M. (2020). Estimating technical efficiency of petroleum refineries
using DEA and tobit model: An India perspective. Computers & Chemical Engineering, 142,
107047.

Despotis, D. K., and Smirlis, Y. G. (2002). Data envelopment analysis with imprecise data.
European Journal of Operational Research, 140(1), 24-36.

https://doi.org/10.1007/s00291-019-00567-

D5.2 Robust and energy- aware planning and scheduling

101

Despotis, D.K. (2005). A reassessment of the human development index via data
envelopment analysis. Journal of the Operational Research Society, 56(8), 969-980.

de Almeida Franco, S. V., da Cunha Ribeiro, D., and Meneguelo, A. P. (2020). A
comprehensive approach to evaluate feed stream composition effect on natural gas
processing unit energy consumption. Journal of Natural Gas Science and Engineering, 83,
103607.

de Gouvea, M. T., and Odloak, D. (1998). One-layer real time optimization of LPG
production in the FCC unit: procedure, advantages and disadvantages. Computers &
Chemical Engineering, 22, S191-S198.

Dogramaci, A., Surkis, J. Evaluation of a Heuristic for Scheduling Independent Jobs on
Parallel Identical Processors. Management Science, 25:12, 1208-1216, 1979.

Ehram S., Sadjadi S.J., Kamran S. (2010) Scheduling flow shops with condition-based
maintenance constraint to minimize expected makespan. International Journal of Advanced
Manufacturing Technology

Eroglu, D. Y. and Ozmutlu, H. C. Solution method for a large-scale loom scheduling
problem with machine eligibility and splitting property. TJTI, 108(12): 2154-2165, 2017.

Emmons, I. H., & Vairaktarakis, G. (2012). Flow shop scheduling: Theoretical results,
algorithms, and applications.

Eirinakis, P., Kasapidis, G., Mourtos, I., Repoussis, P., Zampou, E., Situation aware
manufacturing systems for capturing and handling disruptions Journal of Manufacturing
Systems 58, 365–383

Eroglu, D.Y., Ozmutlu, H.C., Ozmutlu, S., Genetic algorithm with local search for the
unrelated parallel machine scheduling problem with sequence-dependent setup times.
International Journal of Production Research, 52:19, 5841-5856 (2014).

Eroglu, D.Y., Ozmutlu, H.C., Solution method for a large-scale loom scheduling problem
with machine eligibility and splitting property. The Journal of the Textile Institute, 108:12,
2154-2165 (2017).

Fattahi, P., Mehrabad, M.S, Jolai. F. (2007). Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing,
18(3), 331–342.

Fotakis, D., Milis, I., Papadigenopoulos, O., Vassalos, V., Zois, G., Scheduling MapReduce
jobs on identical and unrelated processors. Theory of Computing Systems, 64:5, 754- 782
(2016).

Fotakis, D., Matuschke, J., Papadigenopoulos, O., Malleable scheduling beyond 24
identical machines. https: // arxiv. org/ abs/ 1903. 11016 (2020).

Galán-Martín, Á., Guillén-Gosálbez, G., Stamford, L., and Azapagic, A. (2016). Enhanced
data envelopment analysis for sustainability assessment: A novel methodology and
application to electricity technologies. Computers & Chemical Engineering, 90, 188-200.

Getu, M., Mahadzir, S., and Lee, M. (2012). Analyzing the effects of uncertainties on the
economic performance of a chemical process plant using a probabilistic optimization
technique. Computer Aided Chemical Engineering, 30, 832-836.

D5.2 Robust and energy- aware planning and scheduling

102

Getu, M., Mahadzir, S., and Lee, M. (2013). Profit optimization for chemical process plant
based on a probabilistic approach by incorporating material flow uncertainties. Computers
& chemical engineering, 59, 186-196.

Getu, M., Mahadzir, S., Samyudia, Y.,Khan, M.S., Bahadori, A., and Lee, M. (2015) Risk-
based optimization for representative natural gas liquid (NGL) recovery processes by
considering uncertainty from the plant inlet. Journal of Natural Gas Science and
Engineering, 27, 42–54.

Gong, S., Shao, C., and Zhu, L. (2017a). Energy efficiency evaluation in ethylene
production process with respect to operation classification. Energy, 118, 1370-1379.

Gong, S., Shao, C., and Zhu, L. (2017b). Energy efficiency evaluation based on DEA
integrated factor analysis in ethylene production. Chinese journal of chemical engineering,
25(6), 793-799.

Gonzalez-Garay, A., and Guillen-Gosalbez, G. (2018). SUSCAPE: A framework for the
optimal design of SUStainable ChemicAl ProcEsses incorporating data envelopment
analysis. Chemical Engineering Research and Design, 137, 246-264.

Groflin H., Pham D.N., and Burgy R. (2011). The flexible blocking job shop with transfer
and set-up times. Journal of Combinatorial Optimization 22(2), 121–144.

Gholami M., Zandieh M., and Alem-Tabriz, A. (2009) Scheduling hybrid flow shop with
sequence-dependent setup times and machines with random breakdowns. International
Journal of Advanced Manufacturing Technology

Gurobi Optimization, https: // www. gurobi. com/

Han, Y., and Geng, Z. (2014). Energy efficiency hierarchy evaluation based on data
envelopment analysis and its application in a petrochemical process. Chemical Engineering
& Technology, 37(12), 2085-2095.

Han, Y.M., Geng, Z.Q., Zhu, Q.X., and Qu, Y.X. (2015). Energy efficiency analysis method
based on fuzzy DEA cross-model for ethylene production systems in chemical industry.
Energy, 83, 685–695.

Han, Y., Geng, Z., Wang, Z., and Mu, P. (2016). Performance analysis and optimal
temperature selection of ethylene cracking furnaces: A data envelopment analysis cross-
model integrated analytic hierarchy process. Journal of Analytical and Applied Pyrolysis,
122, 35-44.

Harjunkoski, I., & Grossmann, I. E. (2002). Decomposition techniques for multistage
scheduling problems using mixed-integer and constraint programming methods. Comp.
Chem. Engng, 26, 1533-1552.

Henrion, R., Li, P., Möller, A., Steinbach, M. C., Wendt, M., and Wozny, G. (2001).
Stochastic optimization for operating chemical processes under uncertainty. In Online
optimization of large scale systems, 457-478. Springer, Berlin, Heidelberg.

Henrion, R., and Möller, A. (2003). Optimization of a continuous distillation process under
random inflow rate. Computers & Mathematics with Applications, 45, 247-262.

Hsu, C.-C., Huang, K.-C., & Wang, F.-J. (2010). Online scheduling of workfloow
applications in grid environment. In P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, & P.
M. A. Sloot (Eds.), Advances in grid and pervasive computing (pp. 300{310). Springer Berlin
Heidelberg

D5.2 Robust and energy- aware planning and scheduling

103

Hooker J.N., Ottosson, G., Logic-based Benders decomposition Mathematical
Programming, 96, 33-60 (2003).

Hooker, J.N., Planning and Scheduling by Logic-Based Benders Decomposition.
Operations Research, 55:3, 588-602 (2007).

IBM ILOG CPLEX Optimizer, https: // www. ibm. com/ analytics/ cplex-optimizer.

IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12 Release 8,
Starting from a solution: MIP starts. https: // www. ibm. com/ docs/ en/ SSSA5P_ 12. 8. 0/
ilog. odms. studio. help/ pdf/ usrcplex. pdf, 255-260.

Iyer, R. R., and Grossmann, I. E. (1997). Optimal multiperiod operational planning for utility
systems. Computers & chemical engineering, 21(8), 787-800.

Kemaloğlu, S., özgen Kuzu, E., and Gökçe, D. (2009). Model predictive control of a crude
distillation unit an industrial application. IFAC Proceedings Volumes, 42(11), 880-885.

Kim, J, Kim, H. J., Parallel machine scheduling with multiple processing alternatives and
sequence-dependent setup times International Journal of Production Research, 59:18,
5438-5453 (2020).

Kim, J, Kim, H. J., Rescheduling of unrelated parallel machines with job dependent setup
times under forecasted machine breakdown International Journal of Production Research,
59:17, 5236-5258 (2020).

Kim, J. Song S., Jeong B., Minimising total tardiness for the identical parallel machine
scheduling problem with splitting jobs and sequence-dependent setup times International
Journal of Production Research, 58:6, 1628-1643 (2020).

Kim, Y.D., Shim, S.O., Kim, S.B., Choi, Y.C., Yoon, H.M., Parallel machine scheduling
considering a job-splitting property. International Journal of Production Research, 42:21,
4531-4546 (2004).

Kim, H.J., Lee, J.H., Scheduling uniform parallel dedicated machines with job splitting,
sequence-dependent setup times, and multiple servers. Computers & Operations
Research, 126, (2021).

Komaki G.M., Shaya S. and Malakooti B. (2018). Flow shop scheduling problems with
assembly operations: a review and new trends. International Journal of Production
Research 57(2), 2926-2955.

Kuo, T. H., and Chang, C. T. (2008). Application of a mathematic programming model for
integrated planning and scheduling of petroleum supply networks. Industrial & engineering
chemistry research, 47(6), 1935-1954.

Laborie P., Rogerie J., Shaw P., and Vilım P. (2018). IBM ILOG CP optimizer for
scheduling: 20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2), 210–
250.

Lam, E., Gange, G., Stuckey, P.J., Van Hentenryck, P., Dekker, J.J., Nutmeg: a MIP and
CP Hybrid Solver Using Branch-and-Check. SN Operations Research Forum, 1:22, (2020).

Lee, J.H., Hoon Jang, H., Kim, H.J., Iterative job splitting algorithms for parallel machine
scheduling with job splitting and setup resource constraints. Journal of the Operational
Research Society, 72:4, (2020).

D5.2 Robust and energy- aware planning and scheduling

104

Leiras, A., Ribas, G., Hamacher, S., & Elkamel, A. (2011). Literature review of oil refineries
planning under uncertainty. International Journal of Oil, Gas and Coal Technology, 4(2),
156-173.

Li, Z., & Ierapetritou, M. (2007). Process scheduling under uncertainty: Review and
challenges. Computers and Chemical Engineering, 32, 715-727.

Li, P., Wendt, M., Arellano‐Garcia, H., and Wozny, G. (2002). Optimal operation of
distillation processes under uncertain inflows accumulated in a feed tank. AIChE Journal,
48(6), 1198-1211.

Li, W., Hui, C. W., Li, P., and Li, A. X. (2004). Refinery planning under uncertainty. Industrial
& engineering chemistry research, 43(21), 6742-6755.

Li, W., Hui, C. W., and Li, A. (2005). Integrating CDU, FCC and product blending models
into refinery planning. Computers & chemical engineering, 29(9), 2010-2028.

Li, P., Arellano-Garcia, H., and Wozny, G. (2008). Chance constrained programming
approach to process optimization under uncertainty. Computers & Chemical Engineering,
32, 25–45.

Mahale, S. (2017). Developing a real time online scheduling system for a manufacturing
service company: Achieving visibility (PhD Thesis). Lamar University.

Maecker, S., Shen, L. Solving parallel machine problems with delivery times and tardiness
objectives. Annals of Operations Research, 285, 315-334, 2020. 15

Mascis A. and Pacciarelli D. (2002). Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research 143(3), 498–517.

Mesfin, G., and Shuhaimi, M. (2010). A chance constrained approach for a gas processing
plant with uncertain feed conditions. Computers & chemical engineering, 34(8), 1256-1267.

Mete, E., and Turkay, M. (2018). Energy network optimization in an oil refinery. Computer
Aided Chemical Engineering, 44,1897-1902.

Miller, C.E., Tucker, A.W., Zemlin, R.A. Integer Programming Formulation of Traveling
Salesman Problems. Journal of the ACM, 7:4, 326-329 (1960).

Miller, B. L., and Wagner, H. M. (1965). Chance constrained programming with joint
constraints. Operations Research, 13(6), 930-945

Mokhtari H. and Mehrdad D. (2015). Scheduling optimization of a stochastic flexible job-
shop system with time-varying machine failure rate. Computers and Operations Research

Moradi E., Ghomi F., and Zandieh M. (2010) An efficient architecture for scheduling flexible
job-shop with machine availability constraints International Journal of Advanced
Manufacturing Technology

Moser, M., Musliu, N., Schaerf, A., Winter, F. Exact and metaheuristic ap proaches for
unrelated parallel machine scheduling. Journal of Scheduling,315-334, 2020

Mourtos, I., Vatikiotis, S., Zois, G., Scheduling Jobs on Unrelated Machines with Job
Splitting and Setup Resource Constraints for Weaving in Textile Manufacturing. APMS
2021: Advances in Production Management Systems. Artificial Intelligence for Sustainable
and Resilient Production Systems, 424-434 (2021).

Murali, A., Berrouk, A.S., Dara, S., AlWahedi, Y.F., Adegunju, S., Abdulla, H.S., Das, A.K.,
Yousif, N. and Hosani, M.A. (2020). Efficiency enhancement of a commercial natural gas

D5.2 Robust and energy- aware planning and scheduling

105

liquid recovery plant: A MINLP optimization analysis. Separation Science and Technology,
55(5), 955-966.

Ovacik, I., & Uzsoy, R. (2012). Decomposition methods for complex factory scheduling
problems. Spinger Science & Business Media.

Ozturk, O., Chu, C. Exact and metaheuristic algorithms to minimize the total tardiness of
cutting tool sharpening operations. Expert Systems with Applications, 95, 224-235, 2018.

Perez-Gonzalez P., Fernandez-Viagas V. and Framinan J.M. (2020) Permutation flowshop
scheduling with periodic maintenance and makespan objective. Computers and Industrial
Engineering

Peyro, L.F., Models and an exact method for the Unrelated Parallel Machine scheduling
problem with setups and resources. Expert Systems with Applications: X, 5, (2020).

Peyro, L.F., Ruiz, R., Perea, F., Reformulations and an exact algorithm for unrelated
parallel machine scheduling problems with setup times. Computers & Operations
Research, 81, 173-182 (2019).

Pinto, J. M., and Moro, L. F. (2000). A mixed integer model for LPG scheduling. Computer
Aided Chemical Engineering, 8, 1141-1146.

Prekopa, A., (1995). Stochastic Programming. Mathematics and Its Applications, vol 324.
Springer, Dordrecht.

Qyyum, M. A., Naquash, A., Haider, J., Al-Sobhi, S. A., and Lee, M. (2022). State-of-the-
art assessment of natural gas liquids recovery processes: Techno-economic evaluation,
policy implications, open issues, and the way forward. Energy, 238, 121684.

Rajkumar M., Asokan P. and Vamsikrishna V. (2010). A GRASP algorithm for flexible job-
shop scheduling with maintenance constraints. International Journal of Production
Research

Rahmati S., Habib A., Ahmadi A. and Karimi B. (2018). Multi-objective evolutionary
simulation-based optimization mechanism for a novel stochastic reliability centered
maintenance problem. Swarm and Evolutionary Computation

Ramya, G., & Chandrasekaran, M. (2013). Solving job shop scheduling problem based on
employee availability constraint. Materials and Diverse Technologies in Industry and
Manufacture, 376, 197-206. https://doi.org/10.4028/www.scienti_c.net/AMM.376.197

Roberti, R., Toth, P., Models and algorithms for the Asymmetric Traveling Salesman
Problem: an experimental comparison. EURO Journal on Transportation and Logistics, 1,
113–133 (2012).

Rosales, O.A., Bello, F.A., Alvarez, A., Efficient metaheuristic algorithm and re-formulations
for the unrelated parallel machine scheduling problem with sequence and machine-
dependent setup times. The International Journal of Advanced Manufacturing Technology,
76, 1705–1718 (2015).

Rožanec, J. M., Trajkova, E., Lu, J., Sarantinoudis, N., Arampatzis, G., Eirinakis, P., ... &
Mladenić, D. (2021). Cyber-Physical LPG Debutanizer Distillation Columns: Machine-
Learning-Based Soft Sensors for Product Quality Monitoring. Applied Sciences, 11(24),
11790.

https://doi.org/10.4028/www.scienti_c.net/AMM.376.197

D5.2 Robust and energy- aware planning and scheduling

106

Ruiz-Torres A.J., Paletta G., and Rym M.H. (2017). Makespan minimisation with sequence-
dependent machine deterioration and maintenance events. International Journal of
Production Research

Ruszczynski A., and Shapiro A., (2003). Stochastic Programming. Handbooks in
Operations Research and Management Science, Elsevier, 10, 1-64.

Salas, S. D., Contreras-Salas, L., Rubio-Dueñas, P., Chebeir, J., and Romagnoli, J. A.
(2021). A multi-objective evolutionary optimization framework for a natural gas liquids
recovery unit. Computers & Chemical Engineering, 151, 107363.

Safari, A., and Vesali-Naseh, M. (2019). Design and optimization of hydrodesulfurization
process for liquefied petroleum gases. Journal of Cleaner Production, 220, 1255-1264.

Steiger, C.,Walder, H., Platzner, M., & Thiele, L. (2003). Online scheduling and placement
of real-time tasks to partially reconfigurable devices. In: Proceedings of the 24th
International Real-Time Systems Symposium, Cancun, 224-235.

Tran, T.T., Araujo, A., Beck, J.C., Decomposition methods for the parallel machine
scheduling problem with setups INFORMS Journal on Computing, 28, 83–95 (2016).

Trabelsi W., Sauvey C., and Sauer N. (2012). Heuristics and metaheuristics for mixed
blocking constraints flowshop scheduling problems. Computers Operations Research
39(11), 2520–2527.

Unal, A. T., A_gral_, S., & Ta_sk_n, Z. C. (2020). A strong integer programming formulation
for hybrid flowshop scheduling. Journal of the Operational Research Society, 71 (12), 2042-
2052.

Unsal O. and Oguz C. (2013). Constraint programming approach to quay crane scheduling
problem. Transportation Research Part E 59, 108–122.

Vasconcelos, C. J., Maciel Filho, R., Spandri, R., and Wolf-Maciel, M. R. (2005). On-line
optimization applied to large scale plants. Computer Aided Chemical Engineering (Vol. 20,
pp. 199-204).

Xu S., Dong W., Jin M. and Wang L. (2020). Single-machine scheduling with fixed or flexible
maintenance. Computers and Industrial Engineering

Yalaoui, F., Chu C., An efficient heuristic approach for parallel machine scheduling with job
splitting and sequence-dependent setup times. IIE Transactions, 35:2, 183-190 (2003).

Yaurima V., Burtseva L., and Tchernykh A. (2009). Hybrid flowshop with unrelated
machines, sequence-dependent setup time, availability constraints and limited buffers.
Computers and Industrial Engineering 56(4), 1452–1463.

Yu T., Sun H. and Jun H. (2021) Scheduling proportionate flow shops with preventive
machine maintenance. International Journal of Production Economics

Zandieh M., Khatami A.R., Rahmati Seyed., Habib A. (2017) Flexible job shop scheduling
under condition-based maintenance: Improved version of imperialist competitive algorithm.
Applied Soft Computing Journal

Zandieh, M. Fatemi Ghomi, S. M.T. (2009) Scheduling sequence-dependent setup time job
shops with preventive maintenance Naderi, International Journal of Advanced
Manufacturing Technology

D5.2 Robust and energy- aware planning and scheduling

107

Zanin, A. C., de Gouvea, M. T., and Odloak, D. (2000). Industrial implementation of a real-
time optimization strategy for maximizing production of LPG in a FCC unit. Computers &
Chemical Engineering, 24(2-7), 525-531.

Zanin, A. C., de Gouvea, M. T., and Odloak, D. (2002). Integrating real-time optimization
into the model predictive controller of the FCC system. Control Engineering Practice, 10(8),
819-831.

Zheng Y., Lian L., and Mesghouni K. (2014) Comparative study of heuristics algorithms in
solving flexible job shop scheduling problem with condition-based maintenance. Journal of
Industrial Engineering and Management

