

Deliverable D5.1

Real-time re-optimization algorithms

Version
Version 1.0

Lead Partner
NISSA

Date
30/06/2021

Project Name
FACTLOG – Energy-aware Factory Analytics for Process Industries

Ref. Ares(2021)4253469 - 30/06/2021

2

Call Identifier
H2020-NMBP-SPIRE-2019

Topic
DT-SPIRE-06-2019 - Digital technologies for improved
performance in cognitive production plants

Project Reference
869951

Start date
November 1st, 2019

Type of Action
IA – Innovation Action

Duration
42 Months

Dissemination Level

X PU Public

 CO Confidential, restricted under conditions set out in the Grant Agreement

 Cl Classified, information as referred in the Commission Decision 2001/844/EC

Disclaimer

This document reflects the opinion of the authors only.

While the information contained herein is believed to be accurate, neither the FACTLOG consortium as a whole, nor any
of its members, their officers, employees or agents make no warranty that this material is capable of use, or that use of the
information is free from risk and accept no liability for loss or damage suffered by any person in respect of any inaccuracy
or omission.

This document contains information, which is the copyright of FACTLOG consortium, and may not be copied, reproduced,
stored in a retrieval system or transmitted, in any form or by any means, in whole or in part, without written permission.
The commercial use of any information contained in this document may require a license from the proprietor of that
information. The document must be referenced if used in a publication.

D5.1 Real-time re-optimization algorithms V1.0

3

Executive Summary

This deliverable reports on the specification and implementation of the State-of-the-art
Optimization Methods of the FACTLOG project, reflecting the work performed in the context
of the project Task 5.1 Robust Optimization Methods, and the outcomes thereof. Following
the analysis of the pilot scenarios relevant to the needs for optimization, in parallel with the
elaboration of the different use cases and system requirements, the progressive
implementation of the different modules which are dependent on optimization as well as the
ones which optimization depends on, this deliverable proceeds with describing the
optimization methods as well as the initial version of the optimization toolkit of the FACTLOG
ecosystem.

Starting from the toolkit itself, it is designed to be modular, expandable, and capable to be
adapted and introduced in different cases, starting from the pilots themselves. It can solve
short- mid- and long- term production optimization problems and depending on the different
pilots (ongoing and post the projects lifecycle) and their needs, it can address the provision
of optimal production schedules (e.g., BRC) to re-scheduling (e.g., PIA) and re-configuration
of setting of different production units (e.g., TUPRAS), taking into account all process and
business constraints. The Optimization as a Service module, named optEngine consists of
different layers (as presented in D1.3 Architecture and Technical Specification) is
responsible for the interconnection of the Optimization Module to the remaining FACTLOG
modules (e.g ECTs) enabling them to initiate an optimization round or receive the
optimization’s round results.

Besides the development of the optimization engine this Task had the goal of providing a
theoretical approach to solving the different identified optimization problems of the pilots.
Starting from the TUPRAS case relevant to the Oil Refineries and to the LPG Production
process, the role of optimization was to handle the recovery to on-specs LPG production in
the most energy efficient way. To do so, the optimization module identifies the most energy
efficient combination of operational scenarios for all process units involved in the LPG
purification process and proposes the settings combinations to the shopfloor (or ECT) to
take the appropriate decision and action. The TUPRAS case was solved utilizing a MIP
model, based on a typical flow, and blending modelling approach that also incorporates a
binary decision variable for each operational scenario of each process unit. This approach
enables the optimization engine to take under consideration all involved units in the process,
something that also pushed the boundaries of research (as current solutions focus on single
unit optimization). Through experimentation we found that the behavior of our proposed
approach given different time horizons for recovery will be suitable for real field application.

Moving forward from TUPRAS to the second pilot and respective problem solved by the
optimization module we have the PIA case. In the PIACENZA case, a main goal as in the
overall modern textile industry is to increase productivity while reducing production costs.
The case has been challenging in terms of optimization as it has the inherent properties of
weaving scheduling (job splitting and sequence dependent setup times) in parallel to
additional setup constrains as in this case the number of setups that can be performed
simultaneously on different machines is restricted due to a limited number of setup workers
and daily setup time is also bounded. The PIACENZA case was solved utilizing a mixed
integer linear programming (MILP) formulation that captures the elaborate structure of the
weaving process extended by two combinatorial heuristics that differ on the way they
perform job splitting and assignment to machines, to handle large real instances. Through

D5.1 Real-time re-optimization algorithms V1.0

4

experimentation we found that the solutions provide the best policies to balance makespan,
number of tardy jobs and total tardiness over weekly instances.

The third case in the FACTLOG project the Optimization Toolkit deals with is the
CONTINENTAL case. This is a discrete automotive part manufacturing environment that is
modelled as a 2-stage assembly flow shop with resource constraints. Key challenge is the
integration of maintenance planning and scheduling together with the scheduling of
production orders at the production lines. To that end, an analytics module is providing
maintenance windows and the goal is to schedule maintenance activities during periods that
will have a minimum impact on the schedule in terms of makespan and tardiness. Another
capability that is provided is dynamic re-scheduling to capture new urgent orders and
unscheduled machine breakdowns. A rigorous Constraint Programming formulation is
proposed for modeling and solving the problem. Preliminary results on benchmark data sets
validate the applicability of the model and demonstrate the efficiency, effectiveness and
scalability of the proposed CP approach.

Lastly, the fourth case in the FACTLOG project the Optimization Toolkit handles is the BRC
Steel production case. This is a multistage flowshop with parallel machines at each stage.
The main challenge in this particular case was the lack of digitized information. That
combined with the inherent difficulty in needing cranes to unload / load machines create
important bottlenecks in the production process. The goal of optimization in this case was
to find the optimal production schedule in relation to the makespan or the number of tardy
jobs. The BRC case was solved utilizing MILP for an extended flexible multistage flowshop
problem with machine dependent setup times. Preliminary experimentation showed that the
MIP model can handle instances of medium size quite easily and can provide production
policies that balance between the criterion of minimum makespan and tardy jobs.

In addition to the optimization toolkit, we provide a novel approach for detecting variations
in the process structure (phases) based on processing energy consumption data. These
variations define the structure of a process and as such are important for the optimization of
the process execution, as defined in our Cognitive Factory Model (reported in deliverable
D3.1). Sensors for measuring energy consumption are very common in the industry
processes. Since it is planned to install additional energy sensors in BRC and PIACENZA
pilots, these two will be used for the validation phase.

That is, all sections related to optimisation document the research and innovation work on
optimization (AUEB, UNIPI), while the last section brings in an indicative enhancement and
interplay of the analytics, as presented in D3.1 (NISSA).

D5.1 Real-time re-optimization algorithms V1.0

5

Revision History

Revision Date Description Organisation

0.1 1/06/2021 ToC NISSA

0.2 10/06/2021
Provision of Optimization Input for the
cases of PIA, TUPRAS, BRC and
CONT Chapters 1-6

AUEB, UNIPI

0.3 20/06/2021 Provision of Analytics input Chapter 7 NISSA

0.4 25/06/2021 Released for Internal review AUEB

0.5 27/06/2021 Peer review JSI

1.0 28/06/2021
Addressing review comments and
finalized document for submission

NISSA

Contributors

Organisation Author E-Mail

UNIPI Pavlos Eirinakis pavlose@unipi.gr

UNIPI Grigoris Koronakos gregkoron@gmail.com

UNIPI Konstantinos Kaparis k.kaparis@uom.edu.gr

UNIPI Penny Kalpodimou pennykalp@unipi.gr

AUEB Gregory Kasapidis gkasapidis@aueb.gr

AUEB Panagiotis Repousis prepousi@aueb.gr

AUEB Yiannis Mourtos mourtos@aueb.gr

AUEB Stavros Lounis slounis@aueb.gr

AUEB Georgios Zois georzois@aueb.gr

NISSA Nenad Stojanovic nenad.stojanovic@nissatech.com

mailto:pavlose@unipi.gr
mailto:gregkoron@gmail.com
mailto:k.kaparis@uom.edu.gr
mailto:pennykalp@unipi.gr
mailto:gkasapidis@aueb.gr
mailto:prepousi@aueb.gr
mailto:mourtos@aueb.gr
mailto:slounis@aueb.gr
mailto:georzois@aueb.gr
mailto:nenad.stojanovic@nissatech.com

D5.1 Real-time re-optimization algorithms V1.0

6

Table of Contents

Executive Summary ... 3

Revision History .. 5

1 Introduction ... 10

1.1 Purpose and Scope ... 10

1.2 Relation with other Deliverables .. 10

1.3 Structure of the Document ... 10

2 Optimization-As-a-Service ... 11

2.1 Functional Requirements ... 11

2.2 Architectural view .. 15

2.3 Technology Stack .. 16

2.4 Web API documentation .. 17

2.4.1 API calls documentation ... 17

2.4.2 JSON bodies description .. 19

3 Oil Refineries: Pilot Case by TUPRAS .. 22

3.1 Introduction .. 22

3.2 Literature Review ... 23

3.3 Optimization model and solution method ... 24

3.3.1 LPG purification process .. 24

3.3.2 Optimization Model ... 25

3.3.3 Description of the MIP model ... 29

3.3.4 Reducing the number of operational scenarios .. 30

3.4 Computational Experience .. 31

3.4.1 Experimental setting ... 31

3.4.2 Evaluating the scalability of the MIP model .. 32

3.4.3 Reducing the number of operational scenarios .. 33

3.4.4 Evaluating the quality of solutions vs. the time horizon 34

D5.1 Real-time re-optimization algorithms V1.0

7

4 Textile Industry: Pilot Case by PIACENZA ... 36

4.1 Introduction .. 36

4.2 Literature Review ... 37

4.3 Model and/or Solution method (Demonstration) .. 37

4.3.1 Combinatorial Heuristics... 40

4.4 Computational Experience .. 41

4.4.1 Enhancements ... 42

5 Automotive Manufacturing: Pilot Case by CONTINENTAL 45

5.1 Introduction .. 45

5.2 Literature Review ... 46

5.3 Model and/or Solution method (Demonstration) .. 50

5.4 Computational Experience .. 54

6 Steel Manufacturing: Pilot Case by BRC .. 56

6.1 Introduction .. 56

6.1.1 Scheduling .. 56

6.1.2 Case Description for BRC Ltd .. 57

6.2 Literature Review ... 59

6.3 Model and/or Solution method (Demonstration) .. 60

6.3.1 Notation .. 60

6.3.2 Assumptions ... 61

6.3.3 Mathematical Formulation .. 62

6.4 Computational Experience .. 64

7 Real-time Analytics ... 65

7.1 Data-driven process (phase) variation detection ... 67

7.1.1 Requirements ... 67

7.1.2 Possible approaches .. 67

7.1.3 Data preprocessing .. 68

D5.1 Real-time re-optimization algorithms V1.0

8

7.2 Classification methods ... 70

7.2.1 KNN .. 70

7.2.2 Multinomial Logistic Regression ... 70

7.3 Neural Networks .. 71

7.3.1 Fully Connected Neural Networks .. 71

7.3.2 Recurrent neural networks ... 71

7.4 Dataset for value-dependent models ... 72

7.5 Dataset for value-independent models .. 73

7.6 KNN and MLR training and results .. 73

7.7 Fully connected neural network training and results .. 73

7.8 Recurrent neural network training and results ... 74

References ... 76

Appendix 1 – TUPRAS Input and Output Data Classes .. 81

Appendix 2 – PIACENZA Input and Output Data Classes .. 85

Appendix 3 – CONTINENTAL Input and Output Data Classes 87

Appendix 4 – BRC Input and Output Data Classes ... 90

Appendix 5 – Analytics Classes ... 92

D5.1 Real-time re-optimization algorithms V1.0

9

List of Figures

Figure 1. optEng Functional Requirements .. 11
Figure 2. optEngine Data Requirements .. 15
Figure 3. optEngine data Flow ... 16
Figure 4. optEngine data stack .. 17
Figure 5. Operational scenarios and the modules producing them (modelling and
analytics/ML) and consuming them (optimization and simulation) 23
Figure 6. Level 2 process model of TUPRAS LPG purification plant 24
Figure 7. Best policies to balance makespan, number of tardy jobs and total tardiness, over
weekly instances .. 43

Figure 8. BRC Facility Layout .. 58
Figure 9. Updated cognition model .. 66
Figure 10. Labelling using CPD ... 68
Figure 11. Behavior of parameters in different phases of cutting process 69

Figure 12. Steps and rule-based logic for labelling. ... 70
Figure 13. Visualization of data from energy consumption sensor 72
Figure 14. Dataset for value-independent models ... 73
Figure 15. Layers of neural network .. 73

Figure 16. Results after training 100 epochs ... 74
Figure 17. Results after training 250 epochs ... 75

List of Tables

Table 1. Scalability of the MIP model with respect to the number of possible operational
scenarios per unit .. 33
Table 2. Efficiency and time required for the pre-processing steps removing dominated
operational scenarios for a CDU debutanizer .. 34

Table 3. The effect of the time horizon allowed for on-specs recovery to the objective
function .. 35

Table 4. Model Parameters and Decision Variables .. 38
Table 5. Algorithms and experiments parameters and abreviations 40
Table 6. Results over all weekly instances on 4, 6, 8, 10 and 12 machines 42

Table 7. Results on small (left) and large (right) job instances for 4, 6, 8, 10 machines 43

Table 8: Literature review for integrated shop scheduling and maintenance planning 49

Table 9: Fattahi Dataset with Resource Constraints (1 Resource + Hierarchical objectives
Cmax | Ft) .. 54

Table 10: Results on small and large sacle Flexible Job Shop Scheduling Problems 55
Table 11. Instances’ solution times according to objective criterion 64

D5.1 Real-time re-optimization algorithms V1.0

10

1 Introduction

1.1 Purpose and Scope

WP5 will provide the optimization for the FACTLOG project. To this end, T5.1 Real-time re-
optimization as part of cognitive twins constitutes the first approach in solving the different
cases based on the problems identified taking under consideration the overall FACTLOG
approach (and other modules). In this task, the optimization related to the extension of the
abilities of the Enhanced Cognitive Twins is conducted and the output is the actual solving
approaches taking under consideration textbook and state-of-the-art solution approaches in
terms of exact methods and heuristics.

This deliverable reports on the former aspects reflecting the work performed in T5.1, Real-
time re-optimization as part of cognitive twins following the insight gained by the previous
deliverables and respective work done in interconnected Tasks and Work packages. D5.1
elaborates on the optimization solutions capable to be invokes by the ECTs or Human
Operators under different circumstances.

1.2 Relation with other Deliverables

The starting point for this deliverable is the ‘D1.1 Reference Scenarios, KPIs and Datasets’,
where the pilot cases were examined from the needs of optimization as well and initial KPIs
as well as available datasets were identified to feed optimization. Furthermore, ‘D1.2
Cognitive Factory Framework ‘presents the role of optimization in the FACTLOG cognition
cycle as well as its potential interactions with other modules. Additionally, D5.1 strongly
relates with ‘D1.3 FACTLOG System Architecture and Technical Specifications’ where the
Optimization modules interconnection with all other modules is initially presented. Lastly it
relates with the ‘D6.5 Integrated Package and Platform’ where the actual interconnection of
the Optimization Toolkit in the FACTLOG is explained. D5.1 provides input to ‘D5.2 Robust
and energy-aware planning and scheduling’ and ‘D5.3 FACTLOG optimization toolkit and
service’. Also, and in parallel to other deliverables, it will feed the optimization approach in
respective deliverables as ‘D3.4 Proactive Cognitive Plants’, ‘D6.2 Data collection
Framework’ and ‘D6.6 Integrated Package and Platform’.

1.3 Structure of the Document

Section 2 presents the optEngine, being the connection interface of the Optimization Toolkit
to the FACTLOG remaining modules. From then on, the sections document the work done
on each pilot in terms of optimization. Specifically, they present (a) the Pilot case from the
optimization perspective, (b) the identified optimization problem, (c) the literature review
conducted by the optimization team to account for a thorough scientific coverage of currently
existing solutions, (d) the solution approach for the case, (e) the mathematical formulation
of the pilot problem, and (f) its solution and benchmarking. This presentation flow appears
in Section 3 regarding the TUPRAS optimization, in Section 4 on the PIACENZA case, in
Section 5 concerning the CONTINENTAL case and in Section 6 presenting the BRC case.
Extending the optimization related aspects, Section 7 present an enhancement and an
interplay with indicative analytics of FACTLOG. It concludes with the Appendices, where for
each case the structure of the input and output of the optEngine for all cases is presented.

D5.1 Real-time re-optimization algorithms V1.0

11

2 Optimization-As-a-Service

In this section we describe the optimization module developed and deployed in the
framework of this project. Hereafter, we will refer to this module as optEngine.

OptEngine works as a shell around the optimization services build for the purposes of this
project. Its architecture follows an asynchronous approach and is agnostic to optimization-
specific data requirements. That is, optEngine receives, stores and forwards the
optimization data to the optimization service requested by the end-user. The structure of this
section goes as follows: in Section 2.1 we provide a detailed description of optEngine’s
architecture; in Section 2.2 we provide optEngine’s technology stack; in Section 2.3 we
provide a detailed documentation of optEngine’s web API with which the end-user interacts.

2.1 Functional Requirements

The use cases of this shell are listed below:

• Use Case 1 (UC1): Authenticate user.

• Use Case 2 (UC2): List the available optimization services.

• Use Case 3 (UC3): Submit a new optimization job.

• Use Case 4 (UC4): Get the status and progress of an optimization job.

• Use Case 5 (UC5): Cancel an ongoing optimization job.

• Use Case 6 (UC6): Get the solution of a complete optimization job.

• Use Case 7 (UC7): Store the solution of a complete optimization job.

The image below illustrates the set of these functional requirements:

Figure 1. optEng Functional Requirements

D5.1 Real-time re-optimization algorithms V1.0

12

Use Case 1 Authenticate user.

Brief description This use case states the actions taken to authenticate a user.

Primary Actors User

Pre-conditions The user is registered to optEngine.

Post-conditions The user is authenticated.

Basic flows Tasks Information required

1. User includes the base64-encoded
username:password combination to every action.

Username, password

2. The system authenticates the user.

Alternative flows Tasks Information required

1. If an error occurs, the system returns the respective
error code.

Error_code

Use Case 2 List the available optimization services.

Brief description This use case states the actions taken in order to list the available optimization services.

Primary Actors User

Pre-conditions The user is registered and authenticated.

Post-conditions The user receives a list with the available optimization services.

Basic flows Tasks Information required

1. User requests the list with the available optimization
services.

2. The system returns the available optimization services Route_ids

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 3 Submit a new optimization job.

Brief description This use case states the actions taken to submit a new optimization job.

Primary Actors User

Pre-conditions The user is registered and authenticated.

Post-conditions The user receives a unique identifier, the status, and the progress of the submitted
optimization job.

D5.1 Real-time re-optimization algorithms V1.0

13

Basic flows Tasks Information required

1. User submits the optimization data along with the
optimization service route id.

Optimization_data,
route_id

2. The system forwards the submitted optimization job to
the respective optimization service.

Optimization_data,
route_id

3. The system returns the unique identifier, the status
and progress of the submitted job.

Uuid, status, progress

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 4 Get the status and progress of an optimization job.

Brief description This use case states the actions taken to retrieve, the status and progress of a
submitted optimization job.

Primary Actors User

Pre-conditions The user is registered and authenticated.

The user has submitted an optimization job.

Post-conditions The user receives unique identifier and the status of the submitted optimization job.

Basic flows Tasks Information required

1. User submits the unique identifier of the optimization
job.

uuid

2. The system returns the unique identifier, the status and
progress of the submitted job.

Uuid, status, progress

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 5 Cancel an ongoing optimization job.

Brief description This use case states the actions taken to cancel an ongoing optimization job.

Primary Actors User

Pre-conditions The user is registered and authenticated.

The user has submitted an optimization job.

The optimization job is not finished yet.

Post-conditions The user receives unique identifier and the status of the submitted optimization job.

D5.1 Real-time re-optimization algorithms V1.0

14

Basic flows Tasks Information required

1. User submits the unique identifier of the optimization
job.

uuid

2. The system returns the unique identifier, the status
and progress of the submitted job.

Uuid, status, progress

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 6 Get the solution of a complete optimization job.

Brief description This use case states the actions taken to get the solution of a submitted optimization
job

Primary Actors User

Pre-conditions The user is registered and authenticated.

The user has submitted an optimization job.

The optimization job is successfully complete.

Post-conditions The user receives unique identifier and the solution data.

Basic flows Tasks Information required

1. User submits the unique identifier of the optimization
job.

uuid

2. The system returns the unique identifier and the solution
data of the submitted job.

Uuid, solution_data

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

Use Case 7 Store the solution of a complete optimization job.

Brief description This use case states the actions taken to store the solution of a complete optimization
job

Primary Actors Optimization Services

Pre-conditions The user has submitted an optimization job.

The optimization job is successfully complete.

Post-conditions The solution data is successfully stored.

Basic flows Tasks Information required

D5.1 Real-time re-optimization algorithms V1.0

15

1. The Optimization Services submit the uuid and the
solution data.

Uuid, solution_data

2. The system stores the solution data and updates the
status of the optimization job to complete.

Uuid, solution_data,
status

Alternative flows Tasks Information required

If an error occurs, the system returns the respective error
code.

Error_code

The class diagram below depicts the data requirements of optEngine.

Figure 2. optEngine Data Requirements

2.2 Architectural view

OptEngine works as a shell around the optimization. Its architecture follows an
asynchronous approach and is agnostic to optimization-specific data requirements. That is,
optEngine receives, stores, and forwards the optimization data to the optimization service
requested by the end-user.

Optimization requests along with the respective data are received via a web API. This API
allows the actions described in the previous section. The communication with the API
requires authentication, is encrypted (https) and asynchronous, i.e., once an optimization
job is submitted, the callee does not wait for its completion.

Data stores within optEngine work in a twofold manner:

• Permanent storage via a database (db): this is where optimization requests and the
related data are permanently stored or retrieved and updated when necessary.

D5.1 Real-time re-optimization algorithms V1.0

16

• Temporal storage via the use of queues: this is where optimization data is stored up
to the point where they get consumed by the optimization services that read these
queues.

Regarding the optimization data, both the db and the queues are data-agnostic following a
general json schema. This allows the storage, permanent and temporal, of different data
structures required from different optimization services.

The employed queues allow the asynchronous processing of an optimization job.
Additionally, by being durable they ensure that when optEngine or an optimization service
fails, the job along with data are available in the respective queue. This means that
optEngine, upon reception of a new optimization job, forwards it to the requested
optimization service via a queue. Each optimization service listens for a new optimization
job to a specific queue and writes status/progress updates to another queue. Last,
optEngine listens to (a) a queue for status/progress updates and (b) multiple queues for
optimization results.

The flow of data and the architectural approach of optEngine are depicted below.

Figure 3. optEngine data Flow

2.3 Technology Stack

The technologies used to develop optEngine are the following:

• Java 8

• Spring-boot 2.4.5

• Springdoc openAPI 1.5.2

• Hibernate 1.0.0

• PostgreSQL 11

• RabbitMQ 3.8.16

• Docker 18.09.7

D5.1 Real-time re-optimization algorithms V1.0

17

Figure 4. optEngine data stack

2.4 Web API documentation

2.4.1 API calls documentation
Method GET

Path /route/list

Description Get the routes list.

Parameters Name Description

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 RoutesDTO Found the result of the optimization job with the
supplied uuid.

500 AdoptApiError An internal error has occurred.

Method POST

Path /opt/job

Description Submit a new optimization job.

Parameters Name Description

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Body JobSubmissionDTO

Responses Status Body Description

200 JobStatusDTO Successfully submitted new job.

400 AdoptApiError Invalid route or no data supplied.

500 AdoptApiError An internal error has occurred.

D5.1 Real-time re-optimization algorithms V1.0

18

Method GET

Path /opt/job

Description Get the status of a submitted optimization job.

Parameters Name Description

Uuid The unique identifier of the optimization job.

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 JobStatusDTO Found the optimization job with the supplied uuid.

400 AdoptApiError Invalid/no optimization job uuid supplied.

404 AdoptApiError No optimization job with the supplied uuid found.

500 AdoptApiError An internal error has occurred.

Method DELETE

Path /opt/job

Description Kill a submitted optimization job.

Parameters Name Description

Uuid The unique identifier of the optimization job.

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 JobStatusDTO Optimization job with supplied uuid successfully
killed.

400 AdoptApiError Invalid/no optimization job uuid supplied.

404 AdoptApiError No optimization job with the supplied uuid found.

500 AdoptApiError An internal error has occurred.

Method GET

Path /opt/job/result

Description Get the result of a completed optimization job.

D5.1 Real-time re-optimization algorithms V1.0

19

Parameters Name Description

Uuid The unique identifier of the optimization job.

Authorization(h
eader)

The base-64 encoded string with the user credentials
username:password used for Basic authorization.

Responses Status Body Description

200 JobResultDTO Found the result of the optimization job with the
supplied uuid.

400 AdoptApiError Invalid/no optimization job uuid supplied.

404 AdoptApiError No result found for the specified optimization job
uuid.

500 AdoptApiError An internal error has occurred.

2.4.2 JSON bodies description

Name RoutesDTO

Description Contains information about the available routes.

Attributes Name Description

uuid Unique identifier of the call.

routes The array with the available routes.

Example {

 "routes": [

 "string"

],

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150"

}

Name JobSubmissionDTO

Description Contains information about the optimization job and is submitted to trigger the optimization
service.

Attributes Name Description

route Unique identifier of the optimization job category.

data The required data for the optimization job. The schema is custom to
each type of optimization job.

D5.1 Real-time re-optimization algorithms V1.0

20

Example {

 "route": "max-flow",

 "data": {

 "empty": true,

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

}

Name JobStatusDTO

Description Contains information related to the status of the optimization job.

Attributes Name Description

submitted_at The submission date of the optimization job in millis.

progress The percentage (%) of optimization job progress.

uuid Unique identifier of the optimization job.

status The status of the optimization job. 0=PROCESSING, 1=COMPLETE,
2=FAILED, 3=KILLED.

Example {

 "submitted_at": 1623427969000,

 "progress": 67.5,

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150",

 "status": 0

}

Name JobResultDTO

Description Contains information about the solution of the optimization job.

Attributes Name Description

uuid Unique identifier of the optimization job.

produced_at The production date of the optimization result in millis.

data The required data for the optimization job. The schema is custom to
each type of optimization job.

Example {

 "data": {

 "empty": true,

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 },

 "produced_at": 1623427969000,

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150"

}

D5.1 Real-time re-optimization algorithms V1.0

21

Name AdoptApiError

Description Contains information about API errors.

Attributes Name Description

path The URL.

message The error message.

uuid The unique identifier of the optimization job.

status The http status.

Example {

 "path": "/opt/job",

 "message": "Internal Server Error",

 "uuid": "c11dc261-d8a4-4174-897f-3864defee150",

 "status": 500

}

D5.1 Real-time re-optimization algorithms V1.0

22

3 Oil Refineries: Pilot Case by TUPRAS

3.1 Introduction

The Liquified Petroleum Gas (LPG) is a fuel produced as a by-product of natural gas and oil
refining industry. The production of LPG must adhere to certain quality specifications
regarding specific impurities (e.g., Sulphur, Naphtha and Ethane). In this regard, LPG
purification is a complex process involving different types of interconnected process units.
Within this process, anomalies that may arise in any given process unit may lead to off-
specs situations, i.e., the LPG in the collection tank may deviate from the desired
specifications. In such cases, actions need to be taken to drive on-specs recovery, thus
ensuring the final mixture complies with the regulations.

In the context of the FACTLOG project, the TUPRAS pilot outlines the critical aspects which
should be targeted in order to recover from an off-specs situation in the most energy-efficient
manner. These aspects relate to (a) the early detection of off-specs LPG production, (b) the
exploration of the root-cause and (c) the on-specs recovery of LPG production. Hence,
within FACTLOG, the role of Optimization is to handle point (c). That is, the digital twin of
the LPG production process is enhanced with optimization capabilities to drive on-specs
recovery while minimizing the energy consumption required for this effort. In a nutshell, our
optimization approach is based upon the identification of the most energy efficient
combination of operational scenarios for all process units involved in the LPG purification
process to drive on-specs recovery of the produced LPG.

More specifically, in the TUPRAS refinery that is examined within FACTLOG, the LPG
accumulated in the final tank is obtained from the aggregation of outputs of ten different
input feeds. Each input feed is purified via a set of subsequent and (in some cases)
interconnected process units that remove impurities (i.e., debutanizers, deethanizers and
LPG DEA units). Each process unit can be considered (and hence modelled) as a function
that transforms input to output; this function can either be stated explicitly by a mathematical
formulation or implicitly derived by data-driven approaches such as a machine learning (ML)
model. In this regard, the operational settings of each different process unit (e.g., top and/or
bottom temperature, reboiler flow, pressure etc) constitute the inputs of each process unit,
while the resulting reduction of impurities in the flow of the LPG stream, the reduction of
LPG flow itself, and the energy consumed constitute the output of each process unit. The
mapping of all possible inputs to their corresponding outputs for a specific process unit
constitute the unit’s operational scenarios. That is, each operational scenario is fully
specified by (i) the operational settings of the process unit (pressure, temperatures, etc.),
(ii) the reduction in flow rates and impurities of outputs from the unit (products) and (iii) the
corresponding energy (heat and/or electricity) consumption.

Figure 5 presents these three basic ingredients of each operational scenario. These
scenarios are produced by the modelling module that may incorporate both mathematical
functions as well as analytical and ML models for each process unit. However, it must be
noted that Optimization only requires the reduction in flow and impurities and the
corresponding energy consumption for each scenario. This information for each operational
scenario of each process unit along with real-time production data (e.g., flow and
composition of input feeds, quantity of LPG and impurities in the final tank etc) and real-time
data (e.g., energy consumed) are the inputs of our optimization solution method. Based on
this input and the production process scheme, our optimization method produces and solves

D5.1 Real-time re-optimization algorithms V1.0

23

a Mixed Integer Programming (MIP) model (detailed in Section 3.3.3). The obtained solution
has a global perspective, since optimization examines the whole process and provides the
operational scenario that needs to be adopted for each process unit involved in LPG
production to drive on-specs recovery in the most energy efficient manner. In particular, the
solution constitutes of an assignment of a specific operational scenario to each process unit
involved. Each such operational scenario corresponds to specific operational settings (e.g.,
increase of temperature at the top of the unit by a specified number of degrees) which need
to be applied to the corresponding unit; these proposed settings can also be used by the
Simulation module to evaluate the proposed solution.

Figure 5. Operational scenarios and the modules producing them (modelling and analytics/ML) and consuming them
(optimization and simulation)

3.2 Literature Review

Several challenges of oil refining industry have been met by employing optimization. Khor
et al (2011) and Albahri et al (2018) determine the optimal topology configuration of
petroleum refineries based on mixed integer linear programming (MILP). Concerning the
energy management of refinery operations, Iyer and Grossmann (1997) and Mete and
Turkay (2018) employ MILP to derive the optimum combinations of the equipment that
minimize the energy costs. Sales et al (2018) employed nonlinear optimization and
simulation of refinery units to obtain a production planning for a refinery that maximizes
profit. Also, planning and scheduling issues concerning the petroleum supply network of
typical refineries are addressed by utilizing MILP in Moro and Pinto (2004) as well as in Kuo
and Chang (2008). Li et al (2005) criticised the use of linear models for crude distillation unit
(CDU), Fluid Catalytic Cracking (FCC) and product blending in refinery planning. They
proposed instead simplified empirical nonlinear process models. Kemaloglu et al (2009)
designed a controller for predictive control of crude oil preheat and distillation column of a
crude oil unit in Tupras Izmit Refinery.

In the context of FACTLOG, we focus on the LPG production process. Pinto and Moro
(2000) developed a MILP model to generate a schedule for LPG refinery management so
as to optimize the selection of storage facilities that are used to receive these products and
to feed the product pipeline. In addition, several studies are devoted to the maximization of
the production of LPG specifically in the FCC unit. Such studies are conducted by Gouvea

D5.1 Real-time re-optimization algorithms V1.0

24

and Odloak (1998), Zanin et al (2000) and Zanin et al (2002), and they are based on non-
linear optimization models to accommodate the operation of the corresponding predictive
controller. In a similar vein, Vasconcelos et al (2005) resort to sequential quadratic
programming for the maximization of the LPG and gasoline profit. Almeida Neto et al (2000)
studied a debutanizer unit, from the gasoline stream producing LPG, by incorporating linear
models to Model Predictive Control (MPC).

3.3 Optimization model and solution method

3.3.1 LPG purification process

Figure 6. Level 2 process model of TUPRAS LPG purification plant

The LPG purification process is a complex procedure that involves different interconnected
process units, i.e., debutanizers, deethanizers and LPG DEA. Figure 6 provides a schematic
of this process. It includes three CDU debutanizer units and two platformer debutanizer units

D5.1 Real-time re-optimization algorithms V1.0

25

whose outputs are mixed, respectively. Moreover, it includes an FCC, a DCU and an MQD
debutanizer. Τhere are also two hydrocracker (HYC) debutanizers and deethanizers (these
process the input feed sequentially in two different streams). Moreover, each of the ten input
streams ranging from F1 to F10 represents the individual stream that enters each specific
unit. Junctions of streams, denoted by JC symbol, represent LPG streams (e.g., LPG1,
LPG2 and LPG3) that are mixed before entering the corresponding LPG DEA unit
(responsible for removing sulphur from the LPG stream).

Hence, initially, each feed is treated to remove carbon-based impurities (e.g., C2, C5, etc.).
Depending on the input feed, this step may require processing from a debutanizer (see F1-
F6, F9, F10 in Figure 6) or from both a debutanizer and a deethanizer (see F7-F8 in Figure
6). Next, depending on the type of the debutanizer in the first process stage, the output of
the LPG may be further processed by a LPG DEA unit to remove sulphur-based impurities.
At the final stage of the process, the purified LPG flows are aggregated in the final LPG tank.

3.3.2 Optimization Model

Contrary to the existing work in the literature, our modelling approach is not confined to a
specific process unit but incorporates information from all units that are involved in LPG
production process, offering a global optimization tool. Once an off-specs situation has been
identified, the optimization module is triggered to provide a plan on how to recover to on-
specs LPG production at a global level, with the minimum energy requirements within a
given time-frame. In fact, the proposed plan is derived from the optimal solution and can be
mapped to explicit operational settings for each process unit (e.g., configurations for each
process unit about temperature, pressure, etc.). We consider each specific set of operational
settings of each unit as an operational scenario. For instance, a debutanizer receives a
specific feed and applies temperature (at the top and at the bottom) as well as pressure to
remove impurities, i.e., C2 (and lighter by-products) from the top and C5 (and heavier by-
products) from the bottom. The different settings that may be applied (e.g., higher/lower
temperature at the top/bottom with different levels of pressure applied) result in different
outcomes (level of impurities removed) and accordingly correspond to different energy
consumption levels.

In general, higher energy consumption (i.e., higher costs) leads to a higher removal of
impurities, hence on-specs recovery demands more energy (cost). However, the optimal
level of energy and the required actions for recovery are unknown. For this purpose, we
build our model with the aim to minimize the energy consumption while satisfying the
production specifications of LPG and by incorporating the operational scenarios of each
process unit. We represent the LPG purification process via a MIP model, based on a typical
flow and blending modelling approach that also incorporates a binary decision variable for
each operational scenario of each process unit. In this manner, for each unit, the
optimization module selects whether a specific operational scenario is applied or not. Thus,
the proposed model determines collectively the optimal combination of settings for all
process units by directly selecting the optimal operational scenarios for each one of them.

Note that this modelling approach has enabled us to avoid directly incorporating
temperature, pressure etc and their relation to energy consumption as variables in the
model, and hence to avoid introducing within the model the non-linear relationships that
these impose. That is, we have removed the non-linearity from the model (hence obtaining
a simpler model to optimize) in a rather intuitive manner, by introducing binary decision

D5.1 Real-time re-optimization algorithms V1.0

26

variables (based on the operational scenarios) that model the actual decisions that a
process engineer needs to take when planning for on-specs recovery, i.e., how to change
the operational settings of each process unit.

In what follows, we provide the notation of the sets, the constants and the variables that are
employed in the MIP model. The quantities are measured in kilos (kg), the time intervals are
given in hours and flow rate in kilos per hour (kg/hour). Also, the feed to the debutanizers is
assumed stable for the whole period.

The sets that are used to formally define the MIP model are provided below:

Sets:
Iproc: Set of process units (includes debutanizers, deethanizers, LPG DEA, etc.)
Ijunc: Set of junctions that aggregate different flows into one
Iunits = Iproc ∪ Ijunc: Set of all process units and junctions
Iinput: Set of input units of the process (i.e., the raw feed flows)
Ioutput: Set of output units of the process (i.e., in this case, only the final LPG tank)
Si: Set of operational scenarios for unit i, ∀ 𝑖 ∈ Iunits

𝑵𝒊
−

 : Set of units (neighbors) to which unit i ∈ Iinput ∪ Iunits sends flow

𝑵𝒊
+

 : Set of units (neighbors) from which unit i ∈ Iunits ∪ Ioutput receives flow

Po(Ni): Set of units (neighbors), 𝑁𝑖 ≡ 𝑁𝑖
− or 𝑁𝑖 ≡ 𝑁𝑖

+, that are in the path of the process

towards any output unit in Ioutput to which i ∈ Iinput ∪ Iunits sends flow

The constants that are used to formally define the MIP model are provided below:

Constants:
H ∈ N+: Time horizon (in hours)
𝑬𝒊

𝒔 ∈ 𝑹: Energy consumption of unit Iunits running operational scenario s ∈ Si for a unit of time

(i.e., for an hour)

IFi ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of raw feed i ∈ Iinput
CAPij ∈ 𝑹, i ∈ Iunits: Capacity, i.e., maximum flow rate (kg/hour) that unit i can forward
towards unit j ∈ 𝑁𝑖

−

𝑷𝑭𝒊𝒋
𝒔 ∈ 𝑹, i,j ∈ Iunits: Percentage of flow rate that flows through unit i under operational

scenario s towards unit j ∈ 𝑁𝑖
−

𝑸𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of LPG in i ∈ Ioutput (i.e., the LPG tank) at the start of the recovery

𝑸𝒕𝒐𝒕𝒂𝒍
𝒊 ∈ 𝑹: Total quantity (kg) that i ∈ Ioutput (i.e., the LPG tank) can hold

𝑰𝑺𝑼𝒊 ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of Sulphur within the LPG flowing from the raw
feed i ∈ Iinput

𝑷𝑺𝑼𝒊𝒋
𝒔 ∈ 𝑹: Percentage of flow rate of Sulphur for unit i running operational scenario s ∈ Si

towards unit j ∈ 𝑁𝑖
−. Accordingly, the percentage reduction of Sulphur is 1 − 𝑃𝑆𝑈𝑖𝑗

𝑠 . Note that

𝑃𝑆𝑈𝑖𝑗
𝑠 = 100% if the process unit does not remove Sulphur (e.g., for debutanizers).

𝑸𝑺𝑼𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of Sulphur in i ∈ Ioutput (i.e., the LPG tank) at the start of the

recovery

𝑺𝑷𝑺𝑼 ∈ 𝑹: Specifications (%) for max percentage of Sulphur in the LPG tank
IC2i ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of C2 within the LPG flowing from the raw feed i
∈ Iinput

D5.1 Real-time re-optimization algorithms V1.0

27

𝑷𝑪𝟐𝒊𝒋
𝒔 ∈ 𝑹, i ∈ Iunits: Percentage of flow rate of C2 for unit i running operational scenario s ∈

Si towards unit j ∈ 𝑁𝑖
−. Accordingly, the percentage reduction of C2 is 1 − 𝑃𝐶2𝑖𝑗

𝑠 . Note that

𝑃𝐶2𝑖𝑗
𝑠 = 100% if the process unit does not remove C2, e.g., for LPG DEA

𝑸𝑪𝟐𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of C2, in i ∈ Iinput (i.e., the LPG tank) at the start of the recovery

𝑺𝑷𝑪𝟐 ∈ 𝑹: Specifications (%) for max percentage of C2 in the LPG tank

IC5i ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of C5 within the LPG flowing from the raw feed i
∈ Iinput

𝑷𝑪𝟓𝒊𝒋
𝒔 ∈ 𝑹, i ∈ Iunits: Percentage of flow rate of C5 for unit i running operational scenario s ∈

Si towards unit j ∈ 𝑁𝑖
−. Accordingly, the percentage reduction of C5 is 1 − 𝑃𝐶5𝑖𝑗

𝑠 . Note that

𝑃𝐶5𝑖𝑗
𝑠 = 100% if the process unit does not remove C5, e.g., for LPG DEA

𝑸𝑪𝟓𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of C5, in i ∈ Iinput (i.e., the LPG tank) at the start of the recovery

𝑺𝑷𝑪𝟓 ∈ 𝑹: Specifications (%) for max percentage of C5 in the LPG tank
𝑺𝑷𝑪𝟐+𝑪𝟓 ∈ 𝑹: Specifications (%) for max percentage of sum of C2 and C5 in the LPG tank

The variables that are used to formally define the MIP model are provided below:

Variables:
𝒙𝒊

𝒔 ∈ {𝟎, 𝟏}: Unit i ∈ unit Iunits runs operational scenario s ∈ Si or not

qi ∈ R: Quantity of LPG (kg) in output i ∈ Ioutput (i.e., final LPG tank) at the end of the recovery
(i.e., at the end of hour H)
qSUi ∈ R: Quantity of Sulphur in output i ∈ Ioutput (i.e., final LPG tank) at the end of the
recovery (i.e., at the end of hour H)
qC2i ∈ R: Quantity of C2 in output i ∈ Ioutput (i.e., final LPG tank) at the end of the recovery
(i.e., at the end of hour H)
qC5i ∈ R: Quantity of C5 in output i ∈ Ioutput (i.e., final LPG tank) at the end of the recovery
(i.e., at the end of hour H)
𝒇𝒊𝒋

𝒔 ∈ 𝑹: Flow rate (kg/hour) of unit i ∈ Iunits running operational scenario s ∈ Si towards unit j

∈ 𝑁𝑖
−

𝒇𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of unit i ∈ Iinput ∪ Iunits towards unit j ∈ 𝑁𝑖

−

𝒇𝑺𝑼𝒊𝒋
𝒔 ∈ 𝑹: Flow rate (kg/hour) of Sulphur flowing through unit i ∈ Iinput ∪ Iunits running

operational scenario s ∈ Si towards unit j ∈ 𝑁𝑖
−

𝒇𝑺𝑼𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of Sulphur flowing through unit i ∈ Iinput ∪ Iunits running

operational towards unit j ∈ 𝑁𝑖
−

𝒇𝑪𝟐𝒊𝒋
𝒔 ∈ 𝑹: Flow rate (kg/hour) of C2 flowing through unit i ∈ Iinput ∪ Iunits running operational

scenario s ∈ Si towards unit j ∈ 𝑁𝑖
−

𝒇𝑪𝟐𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of C2 flowing through unit i ∈ Iinput ∪ Iunits towards unit j ∈ 𝑁𝑖

−

𝒇𝑪𝟓𝒊𝒋
𝒔 ∈ 𝑹: Flow rate (kg/hour) of C5 flowing through unit i ∈ Iinput ∪ Iunits running operational

scenario s ∈ Si towards unit j ∈ 𝑁𝑖
−

𝒇𝑪𝟓𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of C5 flowing through unit i ∈ Iinput ∪ Iunits towards unit j ∈ 𝑁𝑖

−

We present below the MIP model that enables identifying the optimal combination of
operational scenarios for the process units that are involved in the LPG purification process.

D5.1 Real-time re-optimization algorithms V1.0

28

D5.1 Real-time re-optimization algorithms V1.0

29

3.3.3 Description of the MIP model

The set of constraints (3.1)-(3.39) define the solution space (i.e., the set of all feasible
solutions), while the sum of the energy consumption of all operational scenarios of the
process units is minimized in the objective function of the model. Notice that the objective
function can be easily modified to support other objectives as well. The set of constraints
(3.1) ensure that only one operational scenario will be selected for each process unit.

D5.1 Real-time re-optimization algorithms V1.0

30

Constraints (3.2) introduce the input feed. The set of constraints (3.3)-(3.4) ensure that the
flow rate 𝑓𝑖𝑗

∗ of unit i to the unit j, will be equal to the flow rate 𝑓𝑖𝑗
𝑠 that corresponds to the

unique selected operational scenario for unit i. Also, the flow rate that a unit receives from
its predecessors is calculated by the set of constraints (3.5), reduced by the reduction of
flow at each predecessor. At the end of the recovery, the quantity of LPG that will be
contained in the final LPG tank is calculated by the set of constraints (3.6)-(3.7).

Similarly to constraints (3.2)-(3.7), the constraints (3.12)-(3.26) are designed to control the
flow rate and the concentration of the impurities in the LPG flow. Specifically, the set of
constraints (3.8)-(3.11) guarantee that the flow rate of sulphur for each unit will be decided
by the flow rate of the selected operational scenario. Also, the concentration of Sulphur in
the final LPG tank, at the end of the recovery, is calculated by the set of constraints (3.12)-
(3.13), with constraint (3.13) applying the constraint emanating from the specification for
sulphur in LPG. Accordingly, the set of constraints (3.14)-(3.19) handle the flow rate and the
concentration of ethane (C2), while the set of constraints (3.20)-(3.25) the corresponding
measures of pentane (C5). Finally, constraints (3.26) conform the quantities of ethane and
pentane (qC2i and qC5i) with the permissible limits of these impurities in the LPG.

3.3.4 Reducing the number of operational scenarios

Since the number of processing units is pre-set (according to the LPG production schema
of the refinery), the solution space is dependent upon the number of possible operational
scenarios per process unit. Reducing the number of operational scenarios per unit will result
in reducing the size of the problem and hence offer computational savings and improvement
of the performance time of the model.

One way to reduce the number of operational scenarios is by utilizing Data Envelopment
Analysis (DEA) assessment (Charnes et al, 1978). In particular, we may consider the
operational scenarios as entities to be evaluated. Thus, we may first measure their
performance via linear programming models in the context of a DEA assessment. Note that
this method has been utilized before in oil refinery production; Han et al (2016) employed
DEA for the selection of optimal temperature method of ethylene cracking furnaces. Apart
from providing an efficiency score for each scenario, we may also develop a procedure for
ranking them (see the methods proposed in (Doyle and Green, 1994; Andersen and
Petersen, 1993; Liang et al, 2008). The procedure will serve as a filter for the MIP model by
excluding many operational scenarios, i.e., by reducing the number of the decision variables
of the model.

Being aware of the real-time demands that may arise for instances with massive number of
operational scenarios and especially under a real-time re-optimization setting, we have
further explored other possible methods (besides DEA) for discriminating among them
without utilizing optimization. Our proposed procedure enables us to reduce considerably
the size of the MIP model. In essence, what our procedure does is to identify the dominating
operational scenarios that need to be introduced in the model and remove all others.

More specifically, consider the case of a CDU debutanizer, where the operational scenarios
include four measures-criteria (f1-f4), i.e., energy consumption, reduction rate of C2,
reduction rate of C5 and LPG quantity that will be purified. These values are the components
of each operational scenario, which we view as a vector in a four-dimensional space. Let
OS1 and OS2 be two operational scenarios. We say that OS1 performs better than OS2 in

D5.1 Real-time re-optimization algorithms V1.0

31

criterion fi (denoted by fi(OS1) > fi(OS2)) if we prefer the value of OS1 to that of OS2 for that
criterion. Similarly, we may say that OS1 performs at least as good as OS2 and denote it by
fi(OS1) ≥ fi(OS2). Then, OS1 dominates OS2 (denoted by OS1 > OS2) if for all criteria {f1,…,f4
} it holds that fi(OS1) ≥ fi(OS2), i=1,…,4, with at least one such relationship being satisfied

as a strict inequality, i.e., fi(OS1) > fi(OS2) for some i=1,…,4. Notice that lower levels of
energy consumption are desired, thus this criterion is modified accordingly to accommodate
the above dominance relationship.

Our proposed method runs in two steps. We first calculate the convex hull of the operational
scenarios by employing the quickhull algorithm developed by Barber et al (1996) to identify
the extreme points, i.e., the extreme operational scenarios in the convex hull that includes
all of them. Next, we apply a technique that is based on dominance relationships to derive
from the extreme points of the convex hull only the dominant ones. These operational
scenarios will be introduced in the MIP model at the last step of the assessment.

3.4 Computational Experience

3.4.1 Experimental setting

In this section, we provide an experimental analysis to examine the scalability of the
proposed approach, i.e., both the scalability of the proposed MIP model (Section 3.3.3) and
of a pre-processing step that reduces the number of operational scenarios (Section 3.3.4)
Moreover, we examine the quality of the calculated solution with respect to the provided
time horizon for on-specs recovery.

More specifically, since the number of process units and the corresponding process schema
is predefined within the TUPRAS pilot LPG purification process (see Figure 6), we first
examine our proposed approach with respect to the number of possible operational
scenarios that each process unit may have. In this regard, we have run a set of experiments
that examines how the computational time grows with the number of possible operational
scenarios per process unit (Section 3.4.2).

Moreover, given the size of the problems that our proposed approach can handle (in terms
of the number of operational scenarios per unit) so as to provide the optimal on-specs
recovery plan within a realistic solution time frame for real-time optimization, we have
developed and examined experimentally a two-step pre-processing method that identifies
dominations between the different operational scenarios and removes any operational
scenarios that are dominated (Section 3.3.4). These are operational scenarios which the
MIP solver would not select for a unit since being dominated by others (e.g., we may remove
an operational scenario which removes less impurities and requires more energy than
another one for the same unit, since the former should never be chosen over the latter within
an optimal solution),

Finally, we examine how the quality of solution changes (regarding the objective function,
i.e., the average energy consumed per hour by the whole LPG purification process) with
respect to the allowed time horizon to achieve on-specs recovery.

To run the experiments, we have created lab data that we generate randomly by following
the directions that TUPRAS has provided. A uniform distribution random number generator
has been utilised for all randomisations. In this regard, we have generated random data for:

D5.1 Real-time re-optimization algorithms V1.0

32

• all input feeds (LPG flow and impurity composition),

• the operational scenarios of each unit (LPG flow towards tank, impurity composition
and energy consumed), and

• the output tank (capacity of the tank, quantity of LPG in the tank at the time that
optimization is called, and impurity composition of the tank content).

The code has been developed in C#, with .NET Core 3.1, utilizing the Mixed Integer
Programming solver of OR-Tools Version 8.1.84871. Our testing platform is a 3.00 GHz 64-
bit Inter(R) Core (TM) i5-8500 machine with 8 GB RAM which runs Windows 10 Pro. In what
follows, we report results from 5 independent runs for each case examined.

3.4.2 Evaluating the scalability of the MIP model

We commence our experimental analysis by examining the scalability of the proposed MIP
model with respect to the number of operational scenarios for each unit. Table 1 presents
the corresponding computational results, providing the time to initialize the MIP model, the
time to solve it as well as the total time in seconds. Note that we have run experiments for
different time horizons allowed for on-specs recovery (i.e., 6, 12, 18 and 24 hours). Here,
we have reported results indicatively for a 12-hours horizon. Note that results did not differ
significantly between different time horizons; this was expected, since the time horizon does
not affect the size of the problem (i.e., does not alter the number of constraints nor the
number of variables).

Our experiments show that for instances in which each unit has at up to 100 operational
scenarios, the total required time is approximately 1 second or less. For instances in which
each unit has up to 1000 operational scenarios, the time required spans from a few seconds
to 1.5 minute, which is still an acceptable time for real-time optimization. This situation
changes for a larger number of operational scenarios. Indicatively, for 2000 operational
scenarios per unit, the time required is approximately 10.5 minutes, while for 5000
operational scenarios per unit, the solution time is more than 1.5 hour. The latter is not
surprising, given the size of the corresponding problem. Indicatively, an instance with 5000
operational scenarios per unit involves solving a MIP with approximately 500.000 variables.

Operational
scenarios per unit

Time to initialize
(in seconds)

Time to solve
(in seconds)

Total time
(in seconds)

10 0.002 0.073 0.075

20 0.004 0.195 0.199

30 0.005 0.174 0.179

40 0.007 0.329 0.336

50 0.008 0.342 0.35

60 0.014 0.632 0.646

70 0.015 0.843 0.858

80 0.016 0.833 0.849

90 0.023 0.747 0.77

100 0.021 1.133 1.154

1 https://developers.google.com/optimization/

https://developers.google.com/optimization/

D5.1 Real-time re-optimization algorithms V1.0

33

Operational
scenarios per unit

Time to initialize
(in seconds)

Time to solve
(in seconds)

Total time
(in seconds)

200 0.045 4.617 4.662

300 0.065 7.87 7.935

400 0.085 12.067 12.152

500 0.119 17.222 17.341

600 0.15 35.627 35.777

700 0.175 55.21 55.385

800 0.19 51.235 51.425

900 0.229 63.415 63.644

1000 0.254 94.565 94.819

2000 0.498 630.01 630.508

3000 0.703 1503.603 1504.306

4000 0.979 3172.77 3173.749

5000 1.168 5672.515 5673.683

Table 1. Scalability of the MIP model with respect to the number of possible operational scenarios per unit

Since the solution of instances incorporating more than 1000 operational scenarios per unit
requires computational time that is non-realistic in a real-time system, in the next section
(Section 3.4.3) we examine computationally the procedure proposed in Section 3.3.4 for
reducing the number of operational scenarios based on dominance relationships.

3.4.3 Reducing the number of operational scenarios

We apply a two-step procedure that significantly reduces the number of operational
scenarios, which should be incorporated in the proposed MIP model for the final
assessment. In the first step we calculate the extreme operational scenarios (i.e., convex
hull) and in the second step we further discriminate among the scenarios by identifying the
dominating ones. Table 2 exhibits the results obtained from experimentation with the
operational scenarios of a CDU debutanizer. Each operational scenario includes measures-
criteria, i.e., energy consumption, reduction rate of C2, reduction rate of C5 and LPG
quantity that will be purified. It is evident that the number of operational scenarios is
drastically reduced by our procedure. Thus, a significantly small number of operational
scenarios will be introduced in the MIP, rendering it effective for the demands of a real-time
optimization system.

Operational
scenarios

Operational
scenarios in
convex hull

Remained
operational
scenarios

Convex
hull time (in

seconds)

Dominance
time (in

seconds)

Total time
(in

seconds)

3000 280 26 0.010 0.001 0.010

4000 314 30 0.011 0.001 0.012

5000 316 35 0.013 0.001 0.013

10000 380 39 0.014 0.001 0.014

20000 500 44 0.019 0.001 0.020

50000 632 48 0.042 0.001 0.044

75000 704 59 0.070 0.001 0.071

100000 742 58 0.078 0.001 0.080

200000 971 78 0.189 0.002 0.191

D5.1 Real-time re-optimization algorithms V1.0

34

Operational
scenarios

Operational
scenarios in
convex hull

Remained
operational
scenarios

Convex
hull time (in

seconds)

Dominance
time (in

seconds)

Total time
(in

seconds)

500000 1134 83 0.446 0.002 0.448

750000 1364 78 0.577 0.002 0.579

1000000 1342 79 0.890 0.002 0.891

2000000 1577 71 1.692 0.002 1.694

3000000 1756 75 2.285 0.002 2.287

5000000 1869 94 4.410 0.003 4.413

Table 2. Efficiency and time required for the pre-processing steps removing dominated operational scenarios for a CDU
debutanizer

3.4.4 Evaluating the quality of solutions vs. the time horizon
In this final part of our experimental analysis, we examine the trade-off between energy
consumption and the time required for recovery. We wish to compare the recovery plans
produced for different time horizons in terms of the total energy consumption required for
recovery (i.e., the objective function which we wish to minimize) over the corresponding
hours. That is, we wish to compare the different time horizons based on the hourly energy
consumption of the whole LPG purification process, when optimized for on-specs recovery.
Note that for the needs of this experiment, and to be able to highlight the difference between
alternative recovery plans, we have assumed a very large interval of values for hourly energy
consumption per unit (indicatively within the interval [1, 1000]) from which we have randomly
selected the consumption corresponding to each operational scenario.

Results are presented in Table 3. It is apparent that as the number of operational scenarios
per unit increases, the hourly energy consumption decreases accordingly for all time
horizons. This is expected, since more options lead to be better solutions. When examining
each case separately, we see that the value of the hourly energy consumption either
decreases or remains the same as the time horizon increases. This again is expected. A
decrease in value corresponds to the case where, given a larger time horizon, an operational
scenario that consumes less energy can be preferred over other scenarios which may be
more efficient in removing impurities (and hence drive on-specs recovery faster) but
consume more energy. On the other hand, when the value remains the same, the identified
operational scenarios are the optimal ones for both time horizons. Overall, the experiments
presented in Table 3 validate our expectations on the behavior of our proposed approach
given different time horizons for recovery.

 Energy consumption per hours (objective function / hours)

Operational
scenarios per unit

Horizon 6 h Horizon 12 h Horizon 18 h Horizon 24 h

10 1673 1673 1673 1673

20 688 688 688 554

30 501 501 404 404

40 416 416 416 248

50 291 220 175 175

60 272 272 215 215

70 243 184 142 142

80 273 217 155 155

90 215 215 215 215

D5.1 Real-time re-optimization algorithms V1.0

35

 Energy consumption per hours (objective function / hours)

Operational
scenarios per unit

Horizon 6 h Horizon 12 h Horizon 18 h Horizon 24 h

100 193 193 106 70

200 99 99 99 81

300 85 85 85 85

400 58 50 48 52

500 56 56 56 56

600 51 51 37 20

700 45 45 45 37

800 43 43 34 27

900 36 29 29 29

1000 34 34 34 34

Table 3. The effect of the time horizon allowed for on-specs recovery to the objective function

D5.1 Real-time re-optimization algorithms V1.0

36

4 Textile Industry: Pilot Case by PIACENZA

4.1 Introduction

Increasing productivity while reducing production costs has been essential in modern textile
plants in terms of business sustainability. Scheduling algorithms (Brucker, 1999) offer a
viable and effective tool to improve productivity, by optimally allocating the available
resources. A typical scheduling problem in textile considers a set of articles/orders to be
woven by a set of looms with respect to their delivery dates. Each order is linked to the
production of a specific fabric type and is accompanied by a positive quantity, while the
looms are unrelated, meaning that each loom operates on different speeds for different
orders. The aim is typically to find a schedule with the minimum makespan, i.e., the time
that the last executed order is finished.

Two properties make weaving scheduling a challenging problem: job splitting (a job can be
split in different machines), and sequence-dependent setup times (per pairs of jobs and per
machine). In practice, the latter is justified by the fact that different fabric types require
different warp chains for processing, thus imposing machine setup times (to replace the
warp chain) from a few hours to a few days (Serafini, 1996). Our work is focused on the
weaving scheduling of PIACENZA, a textile enterprise in north Italy that manufactures
woollen fabrics for luxury clothing brands. Its production environment is a parallel weaving
environment composed of multiple type of looms, operating at different speeds. Weaving
scheduling in PIACENZA adopts all the above-described job and machine properties, plus
setup resource constraints. Specifically, the number of setups that can be performed
simultaneously on different machines is restricted due to a limited number of setup workers
and daily setup time is also bounded. We should note that the seminal work of Serafini
(1996) signifies the addition of setup resource constraints to the standard weaving
scheduling as a severe challenge.

In Section 4.2 we present a brief literature review on weaving scheduling and address the
significance and technical novelty of PIACENZA’s case. In Section 4.3 we propose a formal
definition of our scheduling problem, address its computational complexity and propose a
mixed integer linear programming (MILP) formulation that captures the elaborate structure
of the weaving process. To handle large real instances, we also propose two combinatorial
heuristics that differ on the way they perform job splitting and assignment to machines. We
experiment with several weekly instances on both MILP (using a standard solver) and
heuristics to establish the computational efficiency of our approach in Section 4.4.

As we note, although typically the trade-off between delivery dates, available machines and
setup resources allows the scheduler to deliver each job on time, due to the COVID-19
pandemic many jobs arrive late on the weaving department, while others become tighter in
terms of deadline. To improve resource management while avoiding a further increase of
tardy jobs, we propose, in Section 4.4, a strategy that dedicates an appropriate number of
machines to samples (i.e., jobs with small quantity and tight deadlines) while allocating the
rest to regular jobs (i.e., jobs with large quantity and loose deadlines).

D5.1 Real-time re-optimization algorithms V1.0

37

4.2 Literature Review

As above mentioned, the main two properties that increase the computational complexity of
the weaving scheduling problem are the job splitting and the sequence-dependent setup
times. Both properties have been studied extensively under abstract models of various
machine environments and optimisation criteria (Allahverdi et al., 2008; Rosales et al., 2015;
Peyro, 2020; Lee et al., 2020; Peyro et al., 2019; Correa et al., 2016) and tackled through
exact methods, approximation algorithms and metaheuristics. The weaving scheduling
problem has also been well-studied and admits exact polynomial time algorithms for special
cases where setup times are independent and job splitting is relaxed to preemption (Serafini,
1996), as well as MILP models and efficient metaheuristics for the general case (Eroglu and
Ozmutlu, 2017; Eroglu et al., 2014; Rosales et al., 2015; Wang and Wang, 2015; Pimentel
et al., 2011).

According to our knowledge, the most relevant previous work appears in (Lee et al., 2020;
Peyro, 2020). Lee et al., (2020) proposed near optimal heuristics for a simplified model with
identical machines, job splitting, multiple setup resources and fixed (independent) setup
times per job, under the makespan minimisation objective. Peyro (2020) proposes a
Benders Decomposition approach and heuristics for the general case of unrelated
machines, sequence-dependent setup times and multiple setup resources, again under the
makespan minimisation objective. However, none of these works combine all the complex
properties needed for PIACENZA’s case. Interestingly, Lee et al. (2020) referred to a case
combining job-splitting, sequence-dependent setup times, unrelated machines and setup
resource constraints as an open research direction.

4.3 Model and/or Solution method (Demonstration)

Let J be the set of jobs (orders), and M the set of machines (looms). Each machine m has
a fixed speed sm (in strokes/min) and each job i has a quantity vi (in meters) of the fabric
type that should be produced on one or more machines. Each fabric type is associated with
a list of attributes such as

D5.1 Real-time re-optimization algorithms V1.0

38

Table 4. Model Parameters and Decision Variables

number of yarns, strokes per meter, “annotability” and “chainability” codes, comb height and
code and complexity index, which can be used to calculate the processing time of each job
i in machine m, namely pi,m= q•u/sm, where q is the quantity of job i and ui the number of
strokes/meter for the fabric type of job i, as well as the setup time Si,j,m of a job j succeeding
job i, j≠i, on machine m. To present our mixed integer linear program (MILP), we summarize
the notation in Table 4.

D5.1 Real-time re-optimization algorithms V1.0

39

The overall goal is to minimise the makespan of the schedule, denoted as Cmax. Since setup
times are strictly positive, it is easy to prove that each machine processes at most one part
of each split job. We refer to the above problem as the Weaving Scheduling problem, which
is NP-hard even if machines are identical, job setup times are fixed (and independent) and
R=1 (Letsios et al., 2021).

D5.1 Real-time re-optimization algorithms V1.0

40

(MILP) is partly inspired by formulations on special cases (Lee et al., 2020; Rosales et al.,
2015), extending them to capture the elaborate structure of Weaving Scheduling. More
specifically, Constraints (4.1)-(4.4), (4.7)-(4.11), (4.19), are used to ensure the feasibility of
job assignment, respecting that each machine processes at most one single part of each
split job. Constraints (4.5)-(4.6) allow for job splitting with respect to the quantity limits.
Constraints (4.12), (4.13), (4.16) ensure that the setup of each job part precedes its
execution on the corresponding machine and calculate its completion times. Constraints
(4.14), (4.15) are setup resource constraints, and Constraints (4.17), (4.18) provide tight
lower bounds.

4.3.1 Combinatorial Heuristics

Using an exact commercial solver (Gurobi 9.1) on (MILP), we can solve many daily
instances (i.e., ones with orders arriving at the same date) in a few minutes either optimally
or by a small gap. Hence (MILP) could be used to support short-term goals like scheduling
jobs in a daily manner. However, to fully support the business needs of a weaving enterprise,
including mid- and long-term goals, it is important to efficiently tackle larger real instances.

Next, we propose two combinatorial heuristics, GH1 and GH2, which differ in the way they
handle job splitting and assignment of each part of a job to a machine, while handling the
sequence-dependent setup time and setup resources in the same way. Table 5 summarizes
the notation used in the present and the following section.

Table 5. Algorithms and experiments parameters and abreviations

GH1, performs an iterative exact splitting and assignment of jobs (parts) to machines using
a MILP formulation (which is a subproblem of Weaving Scheduling where setup resource
constraints are not taken into account) that minimises makespan subject to Constraints
(4.5), (4.6) (to ensure that quantity limits are satisfied), (4.20) that calculates a lower bound
on the time needed to process the assigned part of each job on each machine and (4.21)
that limits the number of possible job assignments to max_assgn. GH1 starts by setting the
maximum possible value of max_assgn = |J|•|M| and after each iteration decreases it by 1,
to exploit all possible exact solutions (of increased or decreased job splitting potential)
choosing the best among them. It terminates when the number of jobs exceeds the possible
assignments i.e., max_assgn = |J| - 1, as there is no possibility to assign all jobs.

D5.1 Real-time re-optimization algorithms V1.0

41

On the other hand, GH2 performs a greedy job splitting dividing job quantities into parts

equal to the lower bound Li: For each job i with qi≥2Li we create 𝛼 =⌈
𝑞𝑖

𝐿𝑖
⌉ job parts of quantity

equal to
𝑞𝑖

𝛼
. Then the job parts are ordered according to the LPT rule, to prevent the resulted

schedule from unbalanced machine loads (i.e., when a job with large processing time is
scheduled last). Then assignment process is similar to the one proposed by Aspnes et al.
(1997) for makespan minimisation on unrelated processors: For the LPT order of job parts,

it assigns each part i to the machine k = 𝑎𝑟𝑔𝑚𝑖𝑛𝑚∈𝑀{𝜆
𝑙𝑑𝑚+ 𝑆𝑗,𝑖,𝑚+ 𝑄𝑖,𝑚

𝑢𝑖
𝑠𝑚

 − 𝜆𝑙𝑑𝑚} where j is

the last job executed on m before i.

Both GH1 and GH2 are then following the next two stages. Stage A: For each machine, the
assigned job parts are scheduled optimally by reducing the problem to aTSP, where nodes
correspond to jobs' parts and the distance between nodes to sequence-dependent setup
time plus processing time of the corresponding job part; the exact approach of Roberti and
Toth (2012) is proved quite efficient for our instances. Stage B: For each machine in
decreasing order of load and each available group of workers, we compute the earliest time
that a job part can start its setup, respecting the order of job parts from Stage A. Note that,
in Stage B, by starting from the most loaded machine, we significantly reduce the effect of
idle intervals between consecutive job executions on the final makespan. Moreover, in the
case of GH2, we do not violate the assumption that each machine processes at most one
single part of each split job, as the setup time between parts of the same job is equal to
zero, and thus in the aTSP solution they will be consequently ordered.

Summarizing, GH1 performs an exhaustive job splitting and assignment supported by an
exact solver, while GH2 computes a fast greedy assignment of all possible job parts to
machines.

4.4 Computational Experience

The experiments are performed on 27 weekly instances, from 01/2020 - 07/2020. The
number of jobs per instance ranges from 7-69, the available groups of workers and number
of machines per week are R=3 and 12 respectively, while setup times receive values from
the set {2h,4h,6h}. The experiments ran on a 64-bit Windows PC (Intel i5, 2.5GHz CPU
speed, 8GB RAM) using Python 3.7.2 for GH1, GH2 and GUROBI 9.1 (Python API for
(MILP) and MILP of GH1).

We tested (MILP) on the above dataset, with a 2-hour limit, on 4, 6, 8 and 10 machines and
it was able to solve optimally one weekly instance (7 orders) on 10 and 8 machines in 10
sec and 25 sec respectively, while the other two instances were solved with Gaps 8.62%
after 262 sec for 6 machines and 5.14% after 1735 sec for 4 machines. The difficulty of
(MILP) to deal with job splitting property lies on the fact that the time horizon (thus, the
number of time intervals and the number of variables) increases exponentially as the
quantity of the job increases.

D5.1 Real-time re-optimization algorithms V1.0

42

Interestingly, the above results refer to the solution of Gurobi when using as upper bound
the best among GH1 and GH2 solutions (normalizing processing times and setup times as
multiples of lτ, otherwise we could only handle some daily instances. So, we proceed by
applying GH1 and GH2 to solve our weekly instances. To better evaluate the performance
of GH1 and GH2 we divide our dataset into five subsets of increasing number of jobs, each
consisting of 5-6 weekly instances, and we test each subset for different number of available
machines (4,6,8,10,12).

Table 6. Results over all weekly instances on 4, 6, 8, 10 and 12 machines

As we show in Table 6, GH1 outperforms GH2, achieving results of 4.2 times smaller gap,
but being 3 times slower on average, over different numbers of available machines. Notably,
GH1 achieves almost optimal solutions of Gap less than 7.1% (4.7% on average) for all
instances, in less than a minute (35sec on average). Note that instances with a few orders
on many machines seem to demonstrate larger Gaps, compared to smaller number of
machines mainly due to the total setup time constraint and the limited number of groups of
workers. Additionally, running times may seem inconsistent regarding the size of the
instances, but this is justified due to the small number of instances of each subset. As a
result, instances that are time-consuming within a subset have a huge impact on the average
running time.

4.4.1 Enhancements

It is important to note that, due to the COVID-19 situation, 22.13% of orders were tardy.
Even though the solutions in Section 4.1 achieve small gaps, they cause a significant
increase on the number of tardy jobs which therefore rise to 27.4% of the total orders (an
increase of 24% compared to the ones initially tardy).

Moreover, observing that small jobs (unsplittable with qi < 100 meters) have tight deadlines,
while larger ones have looser, it appeared reasonable to dedicate a set of machines to small
jobs and the rest to the large ones. To this direction, we perform a comparison of GH1 and
GH2 on small and large jobs separately, to decide which is the best choice in every case.
We divide each weekly instance to small and large jobs and, as before, we divide our dataset
into subsets of increasing number of (either small or large) jobs. Subsets with small jobs
consist of 4-6 weekly instances each, while subsets of large jobs of 5-7; note that on the
latter we have excluded two instances, since they included only 1 and 2 jobs, respectively.
The size of small job instances ranges from 6 to 41, while for large from 5 to 34.

D5.1 Real-time re-optimization algorithms V1.0

43

Table 7. Results on small (left) and large (right) job instances for 4, 6, 8, 10 machines

We tested (MILP) on small jobs, using a simplified version (where in constraints (4.16)-(4.18)

we substituted Qi,m•
𝑢𝑖

𝑠𝑚
 by Yi,m•pi,m, while Constraints (4.5)-(4.6) were removed) on 4, 6, 8 and

10 machines, for 8 out of 27 weekly instances (from 6 to 18 orders). Notably the exact solver
was able to solve optimally 20 instances in 98.03 sec on average, 10 instances were solved
with mean Gap 7.36% and for 2 it was not able to obtain a solution under 1-hour limit.
However, since the solutions obtained were of similar Gap with the ones of GH1, we do not
present them in more detail. Table 7 presents the comparison between GH1 and GH2 on
small and large job instances, respectively. GH1 achieves solutions of better quality, with
26.6% and 4.8% Gap for small and large jobs respectively, however GH2 is much faster (4
times on large and almost 6 times on small jobs). Interestingly, for small jobs the difference
on their gap is significantly decreasing (from 410% on large jobs to 55%). Note that Gap
values on small jobs instances are quite large, but this is due to the strict daily total setup
time constraint.

Since GH1 performs better on both small and large job instances, we run it once to schedule
first all small jobs to an appropriate number of machines and re-run it consequently to
schedule the large jobs on the remaining machines or (if possible) after the small jobs on
their dedicated machines. More precisely, we run GH1 for each weekly instance, for 12
candidate numbers of dedicated machines (|M|∈{1,2,…,12}) on small jobs.

The aim of this approach is to examine the effect of dedicated machines on three
optimisation criteria: makespan, number of tardy jobs and total tardiness.

Figure 7. Best policies to balance makespan, number of tardy jobs and total tardiness, over weekly instances

D5.1 Real-time re-optimization algorithms V1.0

44

We consider as baseline the makespan, number of tardy jobs and total tardiness over all
weekly instances computed by GH1 in Section 4.4 and highlight the smallest average
change on each criterion over the same instances, over all runs under different number of
dedicated machines: For makespan, the smallest average increase is 1.55%, while for the
same instances tardiness and the number of tardy jobs decrease by 16.68% and 10%
respectively. For the number of tardy jobs, the largest average decrease is 16%, while for
the same instances the makespan increases by 4.07%, and tardiness decreases by 19.1%.
For total tardiness, the largest average decrease is 22.62%, while for the same instances
makespan increases by 6.35% and number of tardy jobs decreases by 12.12%.

Figure 7 presents a proposed policy for weekly instances, to achieve better tradeoffs
between makespan increase and number of tardy jobs, tardiness decrease. We conclude
that dedicating machines on small jobs positively affects 17 out of 27 instances (in Figure
7), trading a small increase on makespan for large reductions on the number of tardy jobs
and total tardiness. Notably all improvements occurred when the number of dedicated
machines ranges from 2-7, while in 76\% of the instances the range is from 2-4. It is also
encouraging that on 15 of those 17 instances there were various alternative policies that
could be chosen demonstrating also positive effects.

Let us conclude by saying that additional experimentation, on both real and random or
modified literature instances, could yield more insights. Although already competitive within
a quite challenging setting, our optimisation approach will be further strengthened by
examining tighter formulations in a combination with a Benders-like decomposition, to
accomplish provably near-optimal solutions on even larger instances. Moreover, the
robustness of our approach against common disturbances (such as loom malfunctions) will
be also tested in the next stage of the project.

D5.1 Real-time re-optimization algorithms V1.0

45

5 Automotive Manufacturing: Pilot Case by CONTINENTAL

5.1 Introduction

Continental is a discrete part manufacturing environment for automotive parts. Key decision
areas for the operation managers and production line supervisors are the following:

a) generation of static schedules for a given set of production orders and available
resources considering a planning horizon of multiple days and various operational
constraints,

b) reactive re-scheduling of the master plan as new input information arrives (e.g. new
urgent orders) based on the current status of the production lines, and

c) integrated scheduling of maintenance activities.

The production line examined in the context of FACTLOG consists of two stages. The first
stage is preassembly subline that consists of 4 process steps, followed by one buffer step.
Afterwards, the second stage contains 13 assembly process steps. Each process step is
performed by one or more machines that can be seen as a workstation. All jobs follow the
same routing through each line (there is no flexibility), which means that schedules can be
determined at the level of the lines and not at the level of each individual workstation. No
internal buffers are considered between workstations, and there is no parallel processing.
Change of type of parts processed in the lines is followed by a setup time of one or more
workstations. The transportation times for the movement of parts from one workstation to
the next is considered negligible.

The above-described production setting can be modelled as a so-called flow shop
scheduling problem (FSSP) with resource constraints (e.g. semi-finished products, raw
materials etc). More specifically, all products follow a specific processing flow across
multiple processing stages that may consist of one or multiple workstations. In a flow shop
environment, there is a set of production orders (or jobs) that must be completed. Each order
refers to a batch of products with similar characteristics and consists of several sequential
operations that correspond to the processing of a job on every processing stage. The job
size, resource consumptions, bill of materials and due dates are known. Each operation
should be scheduled on specific workstation and no pre-emption / interruption is allowed.
The processing times and the setup times (if needed) per operation on each workstation are
known. The goal is to produce a schedule such that the completion time of the latest job is
minimized (makespan) as well as the total job tardiness.

Apart from resource and other operational constraints, another important dimension is the
scheduling of maintenance activities. It is very important to generate maintenance plans that
will not create long delays on production orders with very tight deadlines and overall to
minimize the negative impact of downtimes on the overall production schedule. Therefore,
it is essential to treat the production and maintenance scheduling as integrated problems.
Assuming that maintenance windows at specific machines are provided either from a
predictive or preventive maintenance module, the aim is to schedule all production orders
as well as to decide when the best time is to perform the machine maintenance activities.

A Constrained Programming (CP) approach is proposed for modelling and solving this
integrated 2-stage Flow Shop Scheduling Problem with Resource Constraints and
Maintenance Windows. The optimization model assumes an input the planning horizon, the

D5.1 Real-time re-optimization algorithms V1.0

46

set of production orders to schedule, the available resources and the windows to perform
maintenance activities. On return, it provides the optimal or near optimal production and
maintenance schedules. On this basis, the core functionalities provided to the human
planners are the following:

• ability to generate static plans and perform what-if scenarios (for example, the
planner can generate plans for different sets of production orders, different resource
availability, different processing times etc), and the

• ability to update the baseline master plan as dynamic events occur.

The dynamic events can be new urgent orders and/or machine breakdowns. Whenever the
planner applies a dynamic event together with the baseline plan, a new re-optimized plan
will be generated. As described earlier in this report, the optimization engine is a Restful API
that accepts requests and delivers responses using Hypertext Transfer Protocol (HTTP) and
JSON text format for data exchange. Appendix 3 presents in detail the inputs and outputs
in terms of classes and data structures.

Below, Section 5.2 provides a brief overview of the literature on flow shop scheduling
problems with resource constraints as well as on integrated shop scheduling problems with
maintenance planning and scheduling. Section 5.3 describes in detail the optimization
model. Finally, Section 5.4 provides some preliminary computational experiments on
synthetic data sets.

5.2 Literature Review

There is a huge literature on shop scheduling problems and various exact and heuristic
approaches have presented and tested on well-known benchmark data sets for a wide
variety of problem variants with various mixes of constraints and (multi-)objective functions.
We refer interested readers to the recent survey paper of Komaki et al. (2018) on Assembly
Flow Shop Scheduling problems. Various papers also propose models and algorithms for
problems with resource constraint; however, the literature in this domain is less organised.

Overall, there are 5 families of resources, namely renewable resources, non-renewable
resources, work-in-progress buffers, bill of materials and tooling resources. The most
common case of renewable resources are utility resources (e.g. electricity) that are
consumed from the machines during their operation. Often both soft and hard limits are
imposed on the usage of utility resources. Non-renewable resources are typically used to
describe material resources that are consumed and/or produced during job operations.
Work-in-Progress buffers are intermediate capacity buffers and describe constraints that
exist before/after machines. These buffers are used to hold jobs when they cannot be
directly processed from the next machine. Finally, tooling constraints are used to describe
limited capacity renewable resources that are occupied by tasks during their execution, and
they are freed once the processing finishes. In practice, this kind of resources can be used
to describe expert personnel that is required to operate specific machines or to execute
specific tasks, or special equipment that is limited in the shop floor.

Most shop scheduling problems studied in the literature assume unlimited capacities and
work-in-progress buffers, and therefore, no waiting is imposed to the execution of any
operation. By adjusting the size of buffers one can enforce the blocking of the execution of
the operations, and hence, cause a dramatic increase to the makespan. Blocking constraints
and limited capacity buffers for the Flow Shop Scheduling Problem (FSSP) appear in the

D5.1 Real-time re-optimization algorithms V1.0

47

work of Trabelsi et al (2012). In this paper, a continuous production shop floor is assumed
with multiple stages, while heuristic and metaheuristic algorithms are proposed for the so-
called FSSP with mixed blocking constraints. Mascis and Pacciarelli (2002) uses the Job
Shop Scheduling Problem (JSSP) to study blocking constraints imposed by zero capacity
intermediate buffers. In a more generic fashion, Brucker et al. (2006) tries to organize the
possible buffer options and also provides essential definitions and disjunctive graph
modifications for a more efficient representation of the JSSP variant. Yaurima et al. (2009)
studies a hybrid FJSSP problem with unrelated machines, sequence dependent setup times
and limited buffers inspired by a television assembly shop floor. Lastly, Belaid et al (2012)
study a two machine Flexible JSSP with limited capacity temporary buffers between
production stages, inspired by a shampoo industry and provide heuristic and metaheuristic
approaches for solving the problem. To our knowledge literature regarding blocking
constraints on Flexible JSSP with parallel machines are very limited. Aschauer et al (2017,
2018) study Flexible JSSPs with no-wait constraints inspired by a hot rolling mill application,
while Groflin et al (2011) develop a metaheuristic algorithm for a similar problem.

In recent years, shop scheduling integrated with maintenance planning and scheduling has
received a lot of attention. Many different types of maintenance have been considered,
including among others PM (Preventive Maintenance) RTFM (Run to failure maintenance)
CBM (Condition-based maintenance), Corrective Maintenance (CM), TBPM (Time-based
Preventive Maintenance) and RCM (Reliability centered Maintenance). In cases of
preventive maintenance various stochastic aspects has been modelled and many different
policies has been tested. Assuming a deterministic setting, one approach that seems to be
effective is to consider a priori maintenance windows for fixed duration maintenance
activities. These windows and the related breakdown probabilities can be derived via
supervised machine learning models based on historical data. In addition, simulation models
can be used to evaluate the generated schedules.

Table 8 provides a summary of the literature for integrated shop scheduling and
maintenance planning.

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Zandieh et
al (2017)

Flexible
Job Shop

Basic &
Preventive
Maintenance

YES Thresholds for the
machine
degradation
dictate the type of
maintenance
activity.
Schedules are
evaluated using
simulation

Makespan Sigmanormal
functions for
maintenance
duration.
Sigmoid
distributions
for the shock
events

Metaheuristic

Perez-
Gonzales
et al.
(2020)

Flow Shop Time-based
Preventive
Maintenance

NO Resumable-non-
resumable
maintenance
activities. Periodic
and deterministic
maintenance
activities

Makespan,
Lateness

- Exact (MILP)

Branda et
al. (2020)

Flow Shop Preventive &
Corrective
Maintenance

NO - Makespan,
Earliness-
Tardiness

Randomized
failure time of
a machine
that follows
Weibull
distribution

Genetic
Algorithm

Dong et al.
(2020)

Job Shop Preventive
Maintenance

NO Fixed and Flexible
maintenance
activities. Single
machine

Makespan,
Total Flow
Time

- Exact (MILP)

D5.1 Real-time re-optimization algorithms V1.0

48

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Shijin and
Jianbo
(2010)

Flexible
Job-Shop
Schedulin
g

Preventive
Maintenance

NO Deterministic
maintenance time
windows. Two
types of
resources are
incorporated to
constraint the
ability of
maintaining more
than one machine
simultaneously.

Makespan,
Total
workload,
Critical
machine
workload

- Filtered beam
search

Cui et al.
(2017)

Job Shop Time based
Preventive
Maintenance

NO Resumable-non-
resumable
maintenance
activities

Makespan - Branch and
Bound +
Heuristic

Hadi and
Mehrdad
(2015)

Flexible
Job Shop

Preventive
Maintenance

YES Discrete failure
rates.
Maintenance time
is constant.
Minimum
availability
constraint

Number of
tardy jobs

- SA + Monte
Carlo
Simulator

Azadeh et
al (2015)

Open
Shop

Preventive
Maintenance

NO - Multiple
(Makespan,
Total
Tardiness,
Earliness,
Machine
availability)

Poisson
distribution is
used to
calculate the
time required
for preventive
maintenance.

MOPSO +
NSGA II
metaheuristics

Moradi et
al (2010)

 Preventive
Maintenance

NO Fixed
maintenance
activities on
specific time
periods.
Everything else
seems
deterministic

Makespan - Preventive
maintenance
and learnable
genetic
architecture

Gholami et
al (2009)

Hybrid
Flow shop

Preventive
Maintenance

YES Machines suffer
only breakdown
events with
stochastic
intervals.

Makespan Exp-rand
function is
used to
calculate
breakdown
intervals and
breakdown
times.

Random key
genetic
algorithm

Naderi et
al (2009)

Job shop Preventive
Maintenance

NO Various
maintenance
policies

Makespan - Genetic
Algorithm and
Simulated
Annealing

Ehram et
al (2010)

Flow Shop Preventive
Maintenance

YES Thresholds for
machine
degradation level.
Metaheuristic is
used for
generating
schedules that
are evaluated
using a simulator

Makespan Shock events
follow a
poisson
distribution,
amount of
degradation
follows an
exponential
distribution,
recovery time
follows
lognormal
distribution

Hybrid
simulated
annealing-
tabu search

Yu and
Hee (2021)

Flow Shop Preventive
Maintenance

NO Proportional
Processing times

Total
Completion
Time,
Maximum
Lateness

- Exact (MILP)

D5.1 Real-time re-optimization algorithms V1.0

49

Reference Problem
type

Maintenance
type

Machine
degradation

Notes Objective Stochastic
aspect

Method

Logendran
and
Talkington
(1997)

Job shop
with
parallel
machines

Preventive
and Corrective
Maintenance

YES Two maintenance
policies.
Schedules are
simulated

Mean time for
machine
failures
follows an
erlang
distribution.
Repair times
are also within
a range of
values

-

Ruiz-
Torres et
al (2017)

Job Shop Repair
Maintenance

YES* Deteriorating
processing times
after each job.
Maintenance
activities restore
machine
performance

Makespan - Heuristics

Shijin and
Ming
(2014)

Two-stage
hybrid flow
shop

Preventive
Maintenance

YES Start times of
preventive
maintenance
activities are
unknown as well
as their number.
Durations are
fixed, availability
uses a
distribution.

Bi-objective
(Makespan
+ Machine
availability)

- MOPSO +
NSGA II
metaheuristics

Bajestani
et al (2014)

Flow Shop Preventive
Maintenance

YES Machine
deterioration
states are
defined, and the
transitions follow
markov chain
rules

Maintenanc
e cost + lost
production
cost due to
late orders

Random-
based
transitions
between
machine
states

MDP for the
maintenance
plan and MIP
for the
production
scheduling

Ben Ali et
al (2011)

Job-shop
scheduling

Preventive
and Corrective
Maintenance

YES Maintenance is
applied based on
2 types of tasks
(periodic and
workflow based)

Multiple
(Makespan,
Total
maintenanc
e cost)

- Genetic
Algorithm

Rajkumar
et al (2010)

Flexible
Job Shop

Preventive
Maintenance

NO Start and end
times of
maintenance
activities as
decision variables

Weighted
sum
function of
makespan,
workload,
total
workload

- GRASP

Yahong et
al (2014)

Flexible
Job Shop

Preventive
Maintenance

NO Maintenance time
windows

Makespan - Heuristics

Rahmati et
al (2018)

Flexible
Job Shop

Preventive
and Corrective
Maintenance

YES Machine status is
checked on
specific intervals,
maintenance
actions can be
preventive or
corrective.
Thresholds
control the
availability of the
machine.
Schedule is
evaluated through
simulation.

Multi-
objective (
Makespan,
maintenanc
e cost
function,
system
reliability
function)

Shock events
are
stochastically
applied and
degrade the
status of the
machine.
PM/CM
activity
durations are
also
stochastically
calculated

4 multi-
objective
simulation
based
optimization
algorithms
(MOBBO,
PESA,
NSGAIII, and
MOEAD)

Table 8: Literature review for integrated shop scheduling and maintenance planning

D5.1 Real-time re-optimization algorithms V1.0

50

5.3 Model and/or Solution method (Demonstration)

5.3.1 Notation

The examined 2-stage FSSP with resource constraints and maintenance activities is
modelled as follows. Let a set of jobs 𝐽 = 1, … , 𝑙, set of available machines 𝑀 = {1, … , 𝑚},
a set of tools 𝑇 = {1, … , 𝐿𝑇}, a set of utility resources 𝑈 = {1, … , 𝐿𝑈}, a set of arbitrary

resources 𝑅 = {1, … , 𝐿𝑅} and a set of WIP Buffers 𝑊 = {1, … , 𝐿𝑊}. We define two dummy
operations 𝑖𝑢

∘ and 𝑖𝑢
∗ for each job 𝑢 ∈ 𝐽, which correspond to the first and the last operations

of the job, respectively. Each job 𝑢 consists of a set of operations 𝑂𝑢, including the dummy

operations. There exists a set Ω that includes all the operations of the problem, Ω = ⋃ 𝑂𝑢
𝑙
𝑢=1 .

Let 𝑛 = |Ω| denote the total number of operations. Each operation 𝑖 ∈ Ω can be executed
on a set of available machines 𝑀𝑖 ⊆ 𝑀 and has a processing time 𝑝𝑖,𝑘, where 𝑘 ∈ 𝑀𝑖. Each

operation is executed once by a single machine, the machines can execute only one
operation at a time and no pre-emption is allowed. During the execution time that machines
execute operations, they may consume more than one utility resource. The flexibility 𝑓𝑥 of
the problem can be defined as a metric of the degrees of freedom regarding the assignment

of operations to different machines, and it can be calculated as
1

𝑛
∑ |𝑀𝑖|𝑛

𝑖=0 .

Each operation 𝑖 ∈ Ω can be associated with two resources 𝑅𝑒𝑞(𝑖) and 𝑃𝑟𝑜𝑑(𝑖) that
correspond to the resources required and produced by the operation respectively, while the
tool associated to the operation is denoted by 𝑡(𝑖). Note that in cases where there are no
required/produced resources or a needed tool for an operation 𝑖, the values of the
corresponding association vectors are set to -1. To reduce the complexity of the problem
we assume that the produced and/or required resource quantity per operation is fixed

(𝑙𝑜𝑡𝑆𝑖𝑧𝑒). Each utility 𝑈𝑘 ∈ 𝑈 has a hard consumption limit denoted by 𝑈𝑘
̅̅̅̅ . For a machine

𝑘 ∈ 𝑀$, $𝑢_𝑖(𝑘) is a binary variable that depicts whether or not machine 𝑘 requires utility 𝑈𝑖.
For simplicity we assume that each machine exhibits a unitary consumption per utility during
each operation. The size of the limited capacity buffer of machine 𝑘 ∈ 𝑀 is denoted by

𝑙𝑐𝑏(𝑘). For each tool 𝑘 ∈ 𝑇 has a hard upper bound is defined, denoted by 𝑇𝑘
̅̅ ̅, that

corresponds to the maximum number of instances of the tool that can be used in parallel.

Starting inventory of a resource 𝑘 ∈ 𝑅 is denoted by 𝑅𝑘
𝑠𝑡𝑎𝑟𝑡. Finally, the associated work in

progress buffer of a resource 𝑘 ∈ 𝑅 is denoted by 𝑤𝑖𝑝(𝑘).

Definition A. A solution 𝑠 is defined as a pair (𝛼, 𝜋), where 𝛼 is a vector that represents the

assignment information of operations to machines and 𝜋 is a table of vectors that represents
the sequence of operations executed at each machine.

More specifically, let 𝛼 = {𝛼(𝑖), ∀𝑖 ∈ Ω}, where 𝛼(𝑖) ∈ 𝑀𝑖, and 𝜋 = {𝜋𝑘, ∀𝑘 ∈ 𝑀}, where 𝜋𝑘
denotes the permutation of operations processed by machine 𝑘. For the sake of completion,

every permutation 𝜋𝑘 starts and ends with two dummy operations 𝑚𝑘
∘ , 𝑚𝑘

∗ ∈ that denote the

start and the end operations of machine 𝑘, respectively. Note that 𝑀𝑚𝑘
∘ = 𝑀𝑚𝑘

∗ = {𝑘} and

𝑝𝑚𝑘
∘ ,𝑘 = 𝑝𝑚𝑘

∗ ,𝑘 = 0, for all 𝑘 ∈ 𝑀. Note that given 𝜋, one can derive the assignment vector 𝛼,

but for the sake of simplicity 𝛼 is also included in the definition of a solution.

We use 𝑝𝑚𝑖 (and 𝑠𝑚𝑖) to denote the machine predecessor (and successor) of operation 𝑖
assigned to machine 𝛼(𝑖) in a solution 𝑠(𝛼, 𝜋). In the same manner, we use 𝑝𝑗𝑖 (and 𝑠𝑗𝑖) to
denote the single job predecessor (and successor) of operation 𝑖.

D5.1 Real-time re-optimization algorithms V1.0

51

Definition B. The cost of a solution 𝑠, namely the makespan of the schedule 𝐶𝑚𝑎𝑥
𝑠 , is defined

as the maximum completion time of all operations in Ω.

Definition C. The head times 𝑟𝑖 denote the difference between the start time of the schedule

and the start time of an operation 𝑖.

Definition D. The tail times 𝑞𝑖 denote the difference between the completion time 𝐶𝑖 of the
operation 𝑖 and the makespan 𝐶𝑚𝑎𝑥, i.e., 𝑞𝐶𝑚𝑎𝑥

− 𝐶 .

The head and tail times can be determined as follows:

𝑟𝑖 = max(𝑟𝑒 + 𝑝𝑒,𝛼(𝑒), 𝑟𝑝𝑚𝑖
+ 𝑝𝑝𝑚𝑖,𝛼(𝑖)) ∀𝑖 ∈ Ω, 𝑒 = 𝑝𝑗𝑖 (5.1)

𝑞𝑖 = max(𝑞𝑒 + 𝑝𝑒,𝛼(𝑒), 𝑞𝑠𝑚𝑖
+ 𝑝𝑠𝑚𝑖,𝛼(𝑖)) ∀𝑖 ∈ Ω, 𝑒 = 𝑠𝑗𝑖 (5.2)

Within the Flexible JSSP context critical components can be defined. The following
definitions provide description for these concepts as well as the necessary notation.

Definition E. An operation 𝑖 is critical when 𝐶𝑚𝑎𝑥 = 𝑟𝑖 + 𝑝𝑖,𝛼(𝑖) + 𝑞𝑖.

In other words, critical operations have no flexibility to move back and forth in the scheduling
horizon, and thus they define the length of the schedule, i.e., the makespan.

Definition F. A sequence of consecutive operations 𝐵 = {𝑜1, 𝑜2, … , 𝑜𝑒−1, 𝑜𝑒} ⊆ 𝜋𝑘 processed

on the same machine 𝑘 is considered as a critical block if all operations 𝑖 ∈ 𝐵 are critical
and |𝐵| ≥ 2.

In the following we provide the necessary definitions to help us solidify the concept of
resource constraints as well as the different types of resources.

Definition G. A sequence of consecutive operations 𝐵 = {𝑜1, 𝑜2, … , 𝑜𝑒−1, 𝑜𝑒} ⊆ 𝜋𝑘 processed
on the same machine 𝑘 is considered as a critical block if all operations 𝑖 ∈ 𝐵 are critical

and |𝐵| ≥ 2.

5.3.2 Constraint Programming Formulation

Constraint Programming has been successfully applied for solving various highly
constrained and large-scale scheduling problems. We refer interested readers to the works
of Goel et al (2015), Rasmussen et al (2017), and Unsal and Oguz (2013). The input of a
CP model is a set of decision variables, a finite set of alternative values as a domain per
decision variable and a set of constraints that must be satisfied. A CP solver works by
enumerating feasible solutions of the problem using branching algorithms. During this
process, it also tries to decrease the domain cardinality of each decision variable by
propagating through the constraints. Constraint propagation identifies values or
combinations of values across multiple decision variables that cannot be part of a feasible
solution, and therefore, can be excluded from the domain sets of the corresponding decision
variables, which can lead to branch pruning (Laborie et al., 2018).

Specifically, for scheduling applications CP models use interval variables. This type of
variable is a natural way of describing a task or activity. Interval variables have four

D5.1 Real-time re-optimization algorithms V1.0

52

attributes: 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑 and 𝑆𝑖𝑧𝑒. 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡 indicates if the interval variable is
included in the solution or not, 𝑆𝑡𝑎𝑟𝑡 and 𝐸𝑛𝑑 denote the start and the end time of the interval
variable, i.e., the start and the end time of the task, while 𝑆𝑖𝑧𝑒 refers to the size of the interval,
i.e., the length of the task.

In the CP Optimizer the notion of sequence interval variables is also defined, which are sets
of interval variables that represent an ordering of the included interval variables. Specific
constraints are also introduced by the 𝐶𝑃 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 to handle sequence interval variables.
In our implementation the following constraints regarding sequence interval variables are
used:

• 𝐵𝑒𝑓𝑜𝑟𝑒(𝑎, 𝑏, 𝑐), within a sequence variable 𝑎, interval variable 𝑏 should end before
𝑐 starts.

In the following we include all expressions and functions used to deduce the status of an
interval variable in the working solution of CP.

• 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑎), is a boolean expression that returns the presence status of an
interval variable 𝑎 in the solution.

• 𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑎), is an integer expression that returns the start time of an interval
variable 𝑎 in the solution.

• 𝐸𝑛𝑑𝑂𝑓(𝑎), is an integer expression that returns the end time of an interval variable
𝑎 in the solution

To further simplify the modelling of resources, we again adopt the notation used by the ILOG
CP Optimizer. More specifically, the CP Optimizer uses the notion of cumulative function
expressions to model discrete cumulative functions over time. The CP Optimizer introduces
several constraints on interval variables as well as the cumulative function expression
themselves, to describe the contribution of each variable but also any constraints regarding
the values of the cumulative function itself over specific time intervals. In the CP model
implemented in this work, the following constraints are used:

• 𝑃𝑢𝑙𝑠𝑒(𝑎, ℎ), i.e., an interval variable 𝑎 contributes ℎ to the corresponding cumulative

function during the execution time window of 𝑎

• 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑎, ℎ), i.e., an interval variable 𝑎 issues a permanent contribution of ℎ to
the corresponding cumulative function at the start of 𝑎

• 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝑎, ℎ), i.e., an interval variable 𝑎 issues a permanent contribution of ℎ to
the corresponding cumulative function at the end of 𝑎

In our implementation, for each operation 𝑖 a decision interval variable 𝜏𝑖 is defined. The
alternative execution options (modes) of an operation 𝑖 on a machine 𝑘 ∈ 𝑀𝑖 are also defined
as decision interval variables 𝜙𝑖,𝑘. For these variables a constraint is defined such that the

𝑆𝑖𝑧𝑒 attribute of each 𝜙𝑖,𝑘 is equal to the processing time 𝑝𝑖,𝑘 of 𝑖 on machine 𝑘. Tο accurately

calculate the waiting times within the limited capacity buffers within the machines, for every

available mode of an operation 𝑖 on a machine 𝑘 ∈ 𝑀𝑖, another decision interval variable 𝜙𝑖,𝑘
𝑏

is defined. For the sake of completion, we define a set 𝜇𝑖 = {𝜙𝑖,𝑘, ∀𝑘 ∈ 𝑀𝑖} to represent all

the available execution modes per operation 𝑖, which is also used to denote the domain set
of variable 𝜏𝑖. Lastly, a sequence interval decision variable 𝜎𝑘 is defined per machine 𝑘 over
the set of interval variables 𝜎𝑘 = {𝜙𝑖,𝑘, ∀𝑖 ∈ Ω}.

D5.1 Real-time re-optimization algorithms V1.0

53

 min 𝐶𝑚𝑎𝑥 (5.3)

subject to:

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝜏𝑖, 𝜇𝑖)∀𝑖 ∈ (5.4)

𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑗, 𝑖)∀𝑖 ∈ Ω, ∀𝑗 ∈ 𝑃𝐽𝑖 (5.5)

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝜎𝑘)∀𝑘 ∈ 𝑀 (5.6)

∑ 𝑃𝑢𝑙𝑠𝑒 (𝜙𝑗,𝑘, 𝑢𝑖(𝑘))𝑛
𝑗=1 ∀𝑘 ∈ 𝑀𝑗 ≤ 𝑈𝑖̅∀𝑖 ∈ 𝑈 (5.7)

∑ 𝑃𝑢𝑙𝑠𝑒 (𝜏𝑗 , 𝑡𝑖(𝑗))𝑛
𝑗=1 ≤ 𝑇𝑖̅∀𝑖 ∈ 𝑇, 𝑡𝑖(𝑗) = 𝑖 (5.8)

∑ 𝑃𝑢𝑙𝑠𝑒(𝜙𝑗,𝑘
𝑏 , 1)𝑚

𝑘=1 ≤ 𝑙𝑐𝑏(𝑘)∀𝑗 ∈ 𝑀𝑗 (5.9)

𝑃𝑟𝑒𝑐𝑒𝑛𝑠𝑒𝑂𝑓(𝜙𝑗,𝑘
𝑏) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝜙𝑗,𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (5.10)

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝜙𝑗,𝑘
𝑏) = 𝐸𝑛𝑑𝑂𝑓(𝜙𝑗,𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (5.11)

𝐸𝑛𝑑𝑂𝑓(𝜙𝑗,𝑘
𝑏) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝜙𝑗,𝑘

𝑏)𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑗𝑗
) ∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗 (5.12)

𝑆𝑡𝑒𝑝(0, 𝑅𝑖
𝑠𝑡𝑎𝑟𝑡) + ∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑃𝑟𝑜𝑑(𝑗)=𝑖  −

∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑅𝑒𝑞(𝑗)=𝑖 ≥ 0 ∀𝑖 ∈ 𝑅

 (5.13)

∑ {𝑆𝑡𝑒𝑝(0, 𝑅𝑖
𝑠𝑡𝑎𝑟𝑡) + ∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗 ∈Ω|𝑃𝑟𝑜𝑑(𝑗)=𝑖 −𝑖∈𝑅|𝑤𝑖𝑝(𝑖)=𝑘

∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑅𝑒𝑞(𝑗)=𝑖 } ≤ 𝑊𝑘
̅̅ ̅̅ ∀𝑘 ∈ 𝑊

 (5.14)

𝐶𝑚𝑎𝑥 ≥ 𝐸𝑛𝑑𝑂𝑓(𝜏𝑖)∀𝑖 ∈ (5.15)

The objective (5.3) refers to the minimization of the makespan. Constraints (5.4) are used
to enforce a unique selection of the available modes for the interval variable 𝜏𝑖 out of the set
𝜇𝑖. Constraints (5.5) are used to cover the precedence relations of the problem, i.e., each

operation 𝑖 can start as soon its job predecessor 𝑝𝑗𝑖 has finished. Constraints (5.6) ensure
that the interval variables included in 𝜎𝑘 do not overlap, since a machine can execute only
one operation at a time. They also ensure that each operation starts after its machine
predecessor has finished. Constraints (5.7) and (5.8) are used to accumulate the
consumption of utility and tool resources respectively. They also make sure that the upper
usage bounds are not surpassed. Constraints (5.9, 5.10, 5.11, 5.12) are used to describe
the usage of limited capacity buffers. More specifically, constraints 5.9 accumulate the
usage of the limited capacity buffer and also impose the buffer capacity, while constraints
5.10, 5.11 and 5.12 are used to calculate the start and end times of the decision interval
variables related to the limited capacity buffers. Constraints (5.13) are used to accumulate
the production and consumption of each generalized resource, while constraints (5.14)

D5.1 Real-time re-optimization algorithms V1.0

54

accumulate the usage of resources on their corresponding work in progress buffer. Lastly,
constraint (5.15) is responsible for the calculation of the makespan.

In the above model, maintenance activities are added as additional dummy jobs / production
orders with predefined release and due dates (to represent the maintenance window). These
dummy jobs have zero processing time on all machines / workstations, except the one that
maintenance will be performed.

5.4 Computational Experience

First, we assess the impact of resources constraints. we are using as a test bed for our
experiments benchmark data sets for the generic Flexible Job Shop Scheduling Problem
that is a generalization of the 2-stage FSSP. For this purpose, a subset of instances of the
Fattahi dataset was chosen (MFJS1 – MFJS10). A hierarchical optimization objective was
selected with the makespan as the primary objective and the maximum flow time as the
secondary objective. A single utility resource is considered, that can limit the simultaneous
operation of machines of the shop floor. The experiment is conducted in two steps. At first,
an unlimited availability of the resource is considered. In this case, all machines can operate
simultaneously without any restrictions or blockers. The CP model solved all problems
optimally and the results for both objectives are presented in Column (RC0) of Table 9. In
the second step of the experiment, a restriction on the maximum allowed consumption of
the resource is applied. The maximal resource limit is defined as a linear function of the
number of available machines, so that the resources availability scales uniformly across all
problem instances of the dataset. In this case, the CP model also managed to optimally
solve all problem instances. The results are presented in Column (RC1) of Table 9.

Instances RC
0
 RC

1

Impact
(RC

1
-RC

0
)/RC

0

N M Ops. C
max

 F
t
 C

max
 F

t
 C

max
 F

t

MFJS1 5 6 15 468 2054 805 3500 72% 70%

MFJS2 5 7 15 459 2072 803 2899 75% 40%

MFJS3 6 7 18 466 2501 996 5018 114% 101%

MFJS4 7 7 21 554 3352 1253 7126 126% 113%

MFJS5 7 7 21 514 3155 1191 6930 132% 120%

MFJS6 8 7 24 634 4212 1498 9636 136% 129%

MFJS7 8 7 24 879 5912 2051 13142 133% 122%

MFJS8 9 8 36 884 6753 2311 18015 161% 167%

MFJS9 11 8 44 1055 9316 2953 29368 180% 215%

MFJS10 12 8 48 1196 11575 3425 33295 186% 188%
Table 9: Fattahi Dataset with Resource Constraints (1 Resource + Hierarchical objectives Cmax | Ft)

The last Column of Table 9 provides the % increase of both objectives when considering
limitations of resource constraints. The results show that in problems with the same number
of machines, both objectives increase as the number of operations increases. The same
effect is observed when the problem size increases (number of jobs as well as the number
of operations). Overall, we notice that even a slight limitation of the maximal resource
consumption limit (almost 20% across all problem instances), can cause significant increase
to the makespan as well as the maximum flow time that can range from 70% to 190%. This

D5.1 Real-time re-optimization algorithms V1.0

55

highlights the importance of applying exact optimization algorithms for production
scheduling at assembly flow shops with resource constraints.

In addition to above sets of experiments, we also tested the scalability and efficiency of the
proposed CP model on very hard-to-solve Flexible Job Shop Scheduling problems. For this
purpose, we used various data sets from the literature. Table 10 summarizes the results
obtained on small- and large-scale problem instances. Clearly, the CP models (using IBM
ILOG CP Optimizer) performs exceptionally well on most common instances of the FJSSP.
It managed to match 180 optimal solutions out of a total of 252 problem instances.
Additionally, it manages to update 49 lower bounds out a subset of 178 instances, while also
recording a total of 14 new best solutions. A recorded average gap of 1.54% shows that the
CP model is able to calculate near optimal solutions within the time limit (3 hours in this
case).

 Benchmark
Set

Number of
problem

instances

Number of
operations

Number of
machines /

workstations

 Avg. Cmax Gap (%)

BRData 10 60-300 2-8 284.6 5.87

HURData 15 15-75 5-15 1428.3 0.96

HUVData 15 15-75 5-15 1366.0 0.07

HUEData 15 15-75 5-15 1697.4 0.47

CBData 21 100-225 11-18 995.2 0.00

DPData 4 12-56 5-10 2212.1 1.87

Average Gap 1.54

Optimal Solutions 180

New Best Solutions 14
Table 10: Results on small and large sacle Flexible Job Shop Scheduling Problems

D5.1 Real-time re-optimization algorithms V1.0

56

6 Steel Manufacturing: Pilot Case by BRC

6.1 Introduction

Scheduling is among the most important issues that concern the operation of manufacturing
systems. Its aim is the efficient allocation of tasks to machines along with the subsequent
time-phasing of this allocation. In general, tasks individually compete for resources which
can be of a very different nature, e.g., manpower, money, processors (machines), energy,
tools. The same is true for task characteristics, e.g., set up times, due dates, relative urgency
weights, and functions describing task processing in relation to allotted resources.
Moreover, a structure of a set of tasks, reflecting relations among them, can be defined in
different ways. In addition, different criteria which measure the quality of the performance of
a set of tasks can be considered (Blazewicz et al., 2014).

In this part we discuss flow shop scheduling problems, and more precisely we analyse the
case of BRC Ltd, which is among the leading UK companies in steel reinforcement. Steel
industry is an important industrial sector in UK and one of the biggest worldwide.

In what follows we briefly introduce the case of BRC, we describe its products, the
manufacturing line and its major components, the warehouse procedure etc. Then we
outline the relevant operational research literature.

Our aim is to develop a conceptual model for a part of the production after the "storage" and
prior to "loading and dispatch" to the customers. We will construct a multistage flexible flow
shop model and we will propose a suitable mixed integer programming model. Finally, we
will present some preliminary results from the application of the MIP model on a set of
randomly generated instances.

6.1.1 Scheduling

Today, resource management is an inevitable part of the performance and efficiency
optimization in manufacturing and service industries. Scheduling is the allocation of shared
resources over time to competing activities. It has been the subject of significant amount of
research in the operations research field. Emphasis is given on investigating machine
scheduling problems where jobs represent activities and machines represent resources;
each machine can process at most one job at a time. The resources include the use of
equipment, the utilization of raw material or intermediates, the employments of operators,
etc. The purpose of scheduling is to optimally allocate the limited resources to processing
tasks over time and the decisions to be determined include the optimal sequence of tasks
taking place in each machine, the amount of material being processed at each time in each
machine and sometimes the processing time of each job in each machine.

In addition, scheduling problems could be classified into offline and online. In an offline
problem, the number of jobs, release dates, delivery dates, processing times, due dates and
other input data are known in advance. When data are not known in advance, but they are
realised only when a job is released then the problem is classified under the label of online
scheduling. Such problems have been extensively used for resource planning in distributed
systems (Hsu et al., 2010; Steiger et al., 2003.)

D5.1 Real-time re-optimization algorithms V1.0

57

The two most common types of scheduling problems, which are native to manufacturing
jobs, are Job-Shop Scheduling Problem (JSSP) and Flow-Shop Scheduling Problem
(FSSP). An important classification is based on the nature of the production facility to
manufacture the required number of products utilizing a limited set of units. If production
orders follow different production routes (require different sequences of tasks) and some
orders may even visit a given unit several times it is known as a multipurpose plant and the
related optimization problems are also called job-shop problems. If every job consists of the
same set of tasks that are performed in the same order and the units are accordingly
arranged in production line, it is classified as a multiproduct plant called flow-shop problem
(Li and Ierapetritou, 2007). The latter class of problems is the ones that are mostly met in
practise.

The main distinction between flow-shop and job-shop is that, in the former case each job
passes the machines in the same order whereas in the latter case the machine order may
vary per job. So, the arrival of a job at a particular machine is not stochastic and most of the
jobs that flow through that machine are similar in nature. Since workflow in a job shop in not
unidirectional, scheduling becomes quite harder and tedious. Jobs in a FSP are produced
either continuously or in batches (Mahale, 2017). We consider the batch process in the sense
that once processing of a batch is started, it cannot be interrupted, and other jobs cannot be
introduced into the batch.

6.1.2 Case Description for BRC Ltd

BRC ltd is the UK’s largest supplier of steel reinforcement and associated products for
concrete. They fabricate cut \& bent rebar to the specs of BS8666:2005 and governed by
the independent steel reinforcement governing body C.A.R.E.S. In 2009 BRC was acquired
by the Celsa Steel Services UK group and currently has 4 depots in the UK with the largest
being in Newport South Wales which can produce up to 2000 tonnes of fabricated
reinforcement for the construction industry per week. The rest are in Romsey near
Southampton, Mansfield in the midlands and Newhouse up in Scotland. BRC manufactures
bespoke products for the construction industry with a lead-time of 5-7 days where each
batch is unique and can be up to 2 tonnes of steel in one product batch. These can be in
the form of simple straight bar, “U” shaped bars to complicated 99 shape codes where it
could be 3D shapes. The process is to cut and shape from stock lengths of straight or coiled
rebar and go through the flow process which will be explained with more details below.

Production transforms the stock into products which are placed by cranes in the finished
product lay-down area. The orders (batches) are fulfilled by placing the various finished
products, which these orders are composed of, onto the trailers. At this phase there is a
scanning procedure where each product gets a time stamp. When the order is complete the
batch is ready for shipment to customer. All the material movements inside the production
line are made by cranes which are a limited shared resource. BRC reported that considering
an additional crane is not an option due to space limitations.

We can segment the BRC factory into distinctive parts where different processes take place.
Looking at figure (Figure 8) that displays the factory layout we see that it is segmented
vertically into the left and right part responsible to produce coils and bars respectively.
Additionally, distinct places are:

• A: Stock Coil (left) and Stock Bars (right) is stored in different places relevant to
diameter.

D5.1 Real-time re-optimization algorithms V1.0

58

• B: For the 3 bays different cranes transfer the raw material from A to any other of
the three B's in order to always have stock to feed in the machines. When a crane
operator observes that in any B there is a shortage of raw material, either coils or
bars, he/she proceeds to move to A, pick up respective raw material and deposit
to respective B.

• C: For the 3 bays this place denotes the position where the trailers that will carry
the final products to the end customer(s) are located in order to be filled with
completed products towards forming completed orders.

• D: Once a C is considered as full it proceeds to location D to be ready to leave the
factory towards delivery to the end customer.

Figure 8. BRC Facility Layout

After receiving the raw materials, the company stocks them into its warehouse in bars or in
coils. When an order is received, stock availability is considered. The coil material goes
through bending in different shapes (it depends on the product code) or straightening and
then is cut to length. The final products are temporarily placed to the finished product area
and finally are loaded and transferred to the customers.

On the other hand, bars potentially need to go through a two-stage production process. A
bar can be cut to length on shearlines or be dispatched as mill lengths regarding the order.
The next job after cutting in size is either to dispatch the bar for shipping or threading and
coupling. After finishing the latter procedure, the bars can be shipped or proceed to the final
stage that is of bending. Finally, the products are temporarily placed to the finished product
area and finally are loaded and transferred to the customers.

In the above figure there are three different types of trailers like Red, Yellow and Green, in
a sense they correspond to the production cycle of BRC. The stock is piled in the Red
trailers. Production transforms the stock into products which are placed by cranes in the
“finished product area” (green block in the layout diagram). In the yellow trailers, the various

D5.1 Real-time re-optimization algorithms V1.0

59

orders (batches) are fulfilled by placing the various finished products that these products are
composed of. Scanning takes place at this phase. This means the product is given a time
that was scanned in the yellow trailers. When the order is complete then the trailer becomes
green, which means that the order can be shipped.

Although the company has a substantial processing capacity there is lack of system to
organise the production plan. In the current processing system, the operator of each crane
has a list of products that need to be moved but not an "optimised" order to do that. The
principle in general suggests placing at the bottom pf the lay down area the straight bars,
bent items are going next and small links at the very top. Since there is no picking system,
the positioning and tracking of products/orders is rather problematic. While crane operators
are looking for some products, they move other finished products around. As a result, a
product might be under a lot of items when the operator is trying to locate it and that causes
major delays.

The machines' idle is mainly caused by the delays of cranes and the lack of feasible
schedules. The processing of a product might have finished in some station but there might
be a further delay due to the shortage of cranes. Thus, the machine remains idle at this
point. Another issue is the lack of data about the time that a crane needs to move a product
inside the production. BRC will install some sensors to give time stamps when the crane
collects an item.

We focus on bay 3, and more precisely on the flow shop scheduling problems for both coil
and bar area. Given the orders in a specific time horizon, our goal is to find the optimal
schedule with respect to specific Key Performance Indicators (KPIs). In our case we will try
to minimize the makespan Cmax and the number of tardy jobs Ti. Those KPIs are encoded
as follows:

• Makespan (Cmax): one of the most common objective criterion. Makespan is the
maximal (or latest) completion time of any job. The makespan is defined as max
(C1,...,Cn) where Ci is the completion time on the last machine for job i. With this goal
the optimization method tries to finish each job as soon as possible. A minimum
makespan usually implies a good utilization of the machine(s).

• Number of tardy jobs (Ti): The number of tardy jobs is a measure that is quite often
whether the company has very tight due dates in compare with the release times.
The difference between the tardiness and the lateness lies in the fact that the
tardiness never is negative. If the company allow tardy jobs after paying "something
like a penalty e.g., complaints by the customers or a clause" then the model is more
flexible but also more complex from computing time perspective since there are more
possible combinations.

6.2 Literature Review

Over the last fifty years a considerable amount of research effort has been focused on
deterministic and stochastic scheduling. In our case we will focus on deterministic Flow Shop
problems. The number and variety of models considered is astounding. The FSP is one of
the most complex scheduling problems and finding an optimal solution for real size instances
in a reasonable amount of time is difficult both in practical and theoretical terms.

D5.1 Real-time re-optimization algorithms V1.0

60

The main reasons that increase the computational complexity are the tardiness tolerance
and the scale of the problem. Sometimes the company has some tight orders' due date so
it's inevitable to avoid the job tardiness. In the above case our objective is to minimize as
much as possible the number of tardy jobs or the convex combination with the makespan
criterion. Flow shop problems have been studied extensively under exact and/or
approximation methods using heuristics and metaheuristics with a variety of optimization
criteria (Badri, 2019; Emmons and Vairaktarakis, 2012; Hsu et al., 2010; Li and Ierapetritou,
2007; Mahale, 2017; Ovacik and Uzsoy, 2012; Ramya and Chandrasekaran, 2013.)

An MIP model which has many aspects of our case (Unal et al., 2020) and mainly lag times
between jobs. Due the shortage of data, about transportation lag times via cranes, we
omitted this parameter however we can be compatible with this requirement on another
phase. Another approach which is quite smart with a good performance is a decomposition
method using mixed-integer and constraint programming (Harjunkoski and Grossmann,
2002). Constraint programming (CP) tend to perform very well in flow shop scheduling
problems as it gives good feasible solutions in a short amount of time. Scheduling problems
can naturally be decomposed into assignment and sequencing subproblems. So, the
authors' strategy relies on either combining mixed-integer programming (MILP) to model the
assignment part and constraint programming (CP) for modelling the sequencing part.
To the best of our knowledge the most relevant previous work appears in (Benda et al.,
2019). The authors proposed an elegant methodology for solving large flow shop scheduling
instances. The authors proposed a tree-based priority rule in terms of a well-performing
decision tree (DT) for dispatching jobs. The proposed DT relies on high quality solutions,
obtained using a constraint programming (CP) formulation. Novel aspects include a unified
representation of job sequencing and machine assignment decisions, as well as the
generation of random forests (RF) to face overfitting behaviour.

6.3 Model and/or Solution method (Demonstration)

The problem that we encounter is a Flexible multistage flowshop problem with machine
dependent setup times. However, we have imposed different additional aspects in our model
to imitate the real situation as accurate as possible. This means that there are some
restrictions regarding the different products. For example, we do not allow a 'coil' product to
be in a stage where bars are being processed. Another factor prohibits any job to go from
one machine to another if these are part of the set of 'non-existing' paths. This feature
reflects the fact that we cannot schedule a job to be processed between an automated and
a manual machine.

6.3.1 Notation

At this section we present the basic notation that will be used in our optimization model. We
note that each order has several different jobs that is required, namely every job in our case
could be a specific product (i.e., a product with a Shape Code which may denote a bar with
diameter Φ = 12 mm and 4 m length etc.). The factory receives the orders from the
customers given a unique order ID to track the jobs that compose an order.

D5.1 Real-time re-optimization algorithms V1.0

61

6.3.2 Assumptions

After consultation with BRC people in charge we will create a deterministic model which
captures the essential structure of Bay 3. With regards to maintenance, there are some
historic data in paper format. Currently there is no periodic planning, and the maintenance
is based on empirical rules. However, BRC will apply in the future a periodic maintenance
plan based on the specifications of each different machine. So, at this phase we consider
the maintenance as input, and we incorporate this aspect by a parameter providing whether
the machine is available or not. The assumptions made for the development of the present
MIP are as follows:

• All jobs are available at the start of time horizon.

• All jobs follow the same predefined order of stages.

• No preemption/ interruption is allowed.

D5.1 Real-time re-optimization algorithms V1.0

62

• No job can be processed by more than one machine at the same time and no
machine. can process more than one task at the same time (i.e., job slitting is not
allowed).

• There should be no waiting time between consecutive job.

• Processing time is independent of the schedule.

• The machines are parallel unrelated which implies that the machines are not uniform
and might have different processing and setup times for the same product.

• If a product is flagged as finished, then it cannot be processed again. So,
reproduction is not allowed.

6.3.3 Mathematical Formulation

In this section we present our MILP for bay 3. We note that at every stage the factory can
process only a specific set of jobs. There are three stages 𝑠 ∈ {1,2,3} and three different

kind of jobs i ∈ {𝑐𝑜𝑖𝑙, 𝑐𝑢𝑡𝑡𝑖𝑛𝑔, 𝑏𝑒𝑛𝑑𝑖𝑛𝑔}. We know in advance that the job 'coil' is processed
in stage s=1, the job 'cutting' is processed in stage s=2 and finally the job 'bending' at stage

s=3. To be consistent with the factory's production line we constructed the set 𝐵̂ whose
members are all the feasible combinations of jobs and machines.

D5.1 Real-time re-optimization algorithms V1.0

63

After discussions with BRC we established as criterion a convex sum of makespan and the
number of tardy jobs, see (6.1).

We define Ymi = 1 if job i is assigned on machine m. The set of constraints (6.2) ensure that
every job is assigned to a machine at each stage, respecting the relationship connecting
jobs to stages, as mentioned before the mathematical model. Constraints (6.3) link the
makespan decision variable with the completion time of the last job to finish its processing.
The next four sets of constraints (6.4) - (6.7) are related with the completion time of a job.
More precisely constraint (6.4) refers that the completion time of a job i in a stage s should
be at least the summation of release date, the processing time that the job needs to be done
and the machines' setup time. The next constraint (6.5) guarantees the precedence
sequence where each job cannot start its processing at stage s before it finishes at stage s-
1. This set of constraints be active only for those jobs which need cutting and bending
operations.

The next two set of constraints (6.6) - (6.7) prevent any two jobs from overlapping in a
common machine. The difference of completion times between job i, which precedes job 𝑖́
should be at least the setup time plus the processing time of the first. From these two sets
of constraints only one set will be active and the other will be redundant. At this point a small
example could be helpful for the reader. First, we remind that the 𝑥𝑖𝑖′𝑠 = 1 if job 𝑖 precedes
job 𝑖′. We can observe that we do not need the machine index m in the 𝑥𝑖𝑖′𝑠 decision
variables because the nature of the constraints and the relationship that exist between 𝑦𝑚𝑖
and 𝑥𝑖𝑖′𝑠 , hence these restrictions make sense only when we have jobs in a common

machine. Let's assume that job job 𝑖 precedes job 𝑖′on machine m at stage s so 𝑦𝑚𝑖 =
1, 𝑥𝑖𝑖′𝑠 = 1. If we substitute these values in the above constraints, we will take:

We can check that the first constraint implies that the starting time of job 𝑖′(𝑐𝑖′𝑠 − 𝑇
𝑚𝑖′
𝑝

− 𝑇𝑚
𝑠)

is at least the completion time of job 𝑖. However, the second constraint is redundant. So, the

initial assumption which job 𝑖 precedes job 𝑖′ is hold.

Forbidden assignments are specified in (6.8), where 𝐵̂ is a set of forbidden (job, machine)
combinations. Using this constraint, we ensure that every job is going to be processed in
the correct stage. Similarly, constraint (6.9) prohibits any job i to go from machine 𝑚 𝑡𝑜 𝑚′ if
these are part of the set of non-existing processing paths 𝑀̂.

Furthermore, constraint sets (6.10) - (6.11) referred to the tardiness of a job. In more detail,
constraints (6.10) calculate the lateness of a job and specified only the positive lateness as

tardiness (𝐿𝑖 = max {𝑐𝑖𝑠 − 𝑇𝑖
𝑑 , 0 }. Constraint (6.11) links the tardiness with the decision

variables counting the number of tardy jobs, namely, if lateness is greater than zero (𝐿𝑖 >
0), then the job is tardy Ti = 1. Finally, the next constraint will reduce the search space by
adding some logical cutting plane. Constraint (6.12) reduces the search domain by making

D5.1 Real-time re-optimization algorithms V1.0

64

sure that the total processing time of the jobs on a machine will fit between 1) the maximum
due date subtracted with the shortest processing and setup times of all later stages, and 2)
the minimum release date plus the shortest processing times of all earlier stages. Finally,
constraints (6.13) ensure the integrallity constraints and the non-negativity as well.

6.4 Computational Experience

We now present a limited set of computational results from the application of our MIP on
some randomly generated instances. Note that most computational studies in the literature
are dominated by heuristic methodologies.

We performed all tests on a machine with Intel(R) Xeon(R) E5-2650 v2 2.6 GHz, 16 GB
RAM, Windows 2007, using CPLEX solver. We want to emphasize on the statistics as the
scale of the instances raise. A batch of test instances consist of 10 problems randomly
generated. We fixed the number of machines as the production line of Bay 3 work with, and
we investigate how the mathematical formulation reacts while we increase the number of
jobs in relationship the objective goal. The percentage near the solution time is the
proportion on how many problems were solved within the time limit condition which is 30
minutes in our case.

Table 11. Instances’ solution times according to objective criterion

We can see every time we add two extra jobs the complexity is increased, and the solution
time tends to grow and the percentage of solved problems within the time limits seems to
deescalate. In addition, we observe that the combination of makespan-tardy jobs is the most
computational expensive case having big solution times and small percentage of solvability.

D5.1 Real-time re-optimization algorithms V1.0

65

7 Real-time Analytics

As already described in the deliverable D1.3, we define cognition as a complex process
aiming to provide a proper understanding of the underlying industry process which starts
with the detection of the variations in the process.

According to the process management theory, there are two types of process variations:

• Common cause variation – All processes have common cause variation. This
variation is a normal part of any process. It demonstrates the true capability of a
process.

• Special cause variation – This variation is not normal to the process. It is the result of
exceptions in the process environment.

In the deliverable D3.1 we focused on the second type of variations, which are usually
leading to the various types of anomalies.

In this deliverable, we focus on the first type of the variations, which can be considered as
“normal” since they are based on the nature of the process. In the industry processes, one
form of the special cause variations is related to the so-called phases in the processes.
These are different operational modes (stages) which are based on the machine design.

For example, if a machine operates in three phases, it should be possible to detect the
variations from the normal/usual/expected value, in the energy consumption in one of the
phases (and not in general). This can be an early indicator of an anomalous behaviour of
that phase and would require (re) optimisation,

These variations define the structure of a process and as such are important for the
optimization of the process execution, as defined in our Cognitive Factory Model (reported
in deliverable D3.1). Figure 9 depicts the difference between the general cognition model
and the new one.

Briefly, in the new model the variations are better understood due to well defined context
since the process structure is known (derived from data).

From the data analytics point of view, it is important to treat/process the phases separately
to be able to properly understand the data and learn precise models. Otherwise, the learning
process will produce models which are covering more than one process mode, without being
able to generalize the knowledge about the process properly. Consequently, the services
based on these models (e.g., anomaly detection) will not working precisely (e.g., generating
too many false positive alarms).

From the cognition point of view, detecting this type of variations is of a high importance for
the situation understanding, i.e., to decide if the reaction on the variations is requested. For
example, by knowing that the machine is in the moving-head phase, there is an expectation
that the usage of resources (e.g., energy) will be decreased, as well as the emission values
should be reduced.

D5.1 Real-time re-optimization algorithms V1.0

66

Figure 9. Updated cognition model

However, by considering that there can be various subphases in a process, an efficient
detection of these variations is a difficult task. Indeed, there are two main approaches for
the detection of phases:

• Model-driven, by knowing the physics of the process and selecting some of the

process parameters for making the decision about the operating phase. For

example, the parameter “depth” is important for drilling processes, for deciding if

the process is in drilling/active or a passive phase.

• Data-driven, where the phases should be learned from the past data using some

ML approaches.

The main constraint in the first method is that it requires a deep domain knowledge, whereas
in some processes it can be missing.

The main advantage of the second method is that it can be applied to any process where
the past data is available. The biggest challenge is to decide which data should be used in
the data-driven process phases detection process. Usually, this should be the process data,
as mentioned parameter “depth” in the drilling process.

In this deliverable we provide a novel approach for detecting process variations using energy
consumption sensor. This sensor is a very common in the industry processes, since the
energy consumption should be properly monitored in the context of various regulations, esp.
from the environmental protection point of view. Moreover, it is planned to install additional
energy sensors in at least two pilots (BRC, PIAZENCA), so that the relevance for this service
is clear.

Since the data from the pilots is not available yet, we have used the energy consumption
data available from other industry pilots. Since the format of the data obtained from different

D5.1 Real-time re-optimization algorithms V1.0

67

energy sensors should be similar, we argue that the generalization of the proposed solution
and its application on selected pilots is feasible.

The selected industry pilot is related to plasma cutting process, whereas the energy
consumption sensor is attached to one of those machines. In the following text we present
the results from that pilot.

7.1 Data-driven process (phase) variation detection

This section explores relevant details of designing, implementation and testing of plasma
cutter detection system based on power sensors. The system is intended for detecting
cutting phases of plasma cutter.

A solution for this system already exists, but is mostly based on processing video streams,
from usual and special industry cameras. These cameras enable the clear visualization of
the processes as if they were cold.

It is thought that system can be overburdened with a real-time video processing.
Furthermore, expanses for using and maintaining such hardware are thought to be
excessive for customers. The main goal of detection system is excluding camera sources
completely or using them as an optional type of source if the system satisfies desired
performances.

7.1.1 Requirements

To detect plasma cutter phases without the use of camera video sources, we can only rely
on a power sensors data. The power sensor measures following parameters in three points
(A, B. C):

-THDI- current harmonic distortion

-THDU- voltage harmonic distortion

Requirements include video sources from common cameras needed for labelling phases as
cutting or not, as well as actual power sensors data pre-processed for neural network input.

7.1.2 Possible approaches

There are two main approaches for the phase detection:

• detection of cutting phase and

• classification every phase as cutting or not cutting.

Classification seems to be a good choice if we assume that we can detect the
following phases:

• when machine does not work at all,

• when it works but does not move,

• when it moves but does not cut

D5.1 Real-time re-optimization algorithms V1.0

68

and the last one is a phase we are looking for - when it cuts, according to the data we get
from sensors.

Another open issue is whether we will need feature extraction. If we think about the nature
of data (current, voltage), it seems like we could extract enough information from raw data
for finding threshold values. Another approach is feature extraction for detecting patterns of
every phase.

Regarding data preprocessing, an open issue is the segment to be detected. The question
is if it is possible to detect cutting only from one row or we need to segment data. A row is a
particular measurement from power sensor which is performed each 2-3 seconds and it is
open if a particular phase can be detected according to a row or a window of continual rows
(measurements) is needed, labeled as observed phase. According to the nature of data, it
seems to be possible to detect cutting for every measurement (measurements are data from
power/energy sensor).

7.1.3 Data preprocessing

This chapter focuses on approaches and constraints for dataset preprocessing.

7.1.3.1 First approach

Data from power sensors are labelled with corresponding phases using CPD (Change Point
Detection) with a Binary segmentation algorithm in a background. In this context, change
point is a particular point where the phase has been changed. In those points values for
'Active Power Total' parameter are abruptly increased or decreased. Though, we labelled
all data between two change points as an appropriate phase and we got about 3000
measures per each phase. The illustration below shows the process of labelling using this
method.

Figure 10. Labelling using CPD

There is one constraint which was discovered after labelling with CPD, and its limited usage
of CPD for this use case. Plasma machine can use different power levels while performing

D5.1 Real-time re-optimization algorithms V1.0

69

cutting on different materials. That means that some phases which are considered to be
clearly cutting for one power level, would be active state period without cutting for higher
power levels.

This phenomenon was the reason for changing the approach for data preprocessing. Better
approach demands relying on a relation between the parameters, instead of the values, and
that required some feature extraction from data we have.

7.1.3.2 Second approach

After observing the behaviour of parameters for different power levels and different phases,
it was clear that correlations of some parameters stay the same in all observed cases,
though it was used for data pre-processing. Correlation between all pairs of points where
THDI is measured (a with b, b with c, and a with c) are extracted as new features. The
illustration below shows the behaviour of parameters in different phases of cutting process.

The correlation is extracted on a window of 5 continual measurements, and after that rule-
based logic is used for determining the class of the phase for each measurement. When this
step is done, voting performed on set of window determines appropriate class for that
window. Now, dataset is totally based on parameter relations, instead of values. Flow-chart
below shows the steps for better understanding and the following illustration shows the rule-
based logic for labelling.

Figure 11. Behavior of parameters in different phases of cutting process

D5.1 Real-time re-optimization algorithms V1.0

70

Figure 12. Steps and rule-based logic for labelling.

Furthermore, one more feature is added, it is a range for Active Power Total Average
in observed window. Now, dataset is totally based on parameter relations, instead of values,
so this idea is used for further processing. The main advantage of this is providing the
possibility to detect phases of cutting process totally regardless of parameter values,
because they can vary due to use of different power levels of plasma machine.

7.2 Classification methods

This chapter discusses different classification methods we used for phase detection, as well
as results after performing each of them. We selected two methods KNN, Multinomial
Logistic Regression.

7.2.1 KNN

KNN (k-nearest neighbours’ algorithm) is commonly used for classification problems. In k-
NN classification, the output is a class membership. An object is classified by a plurality vote
of its neighbours, with the object being assigned to the class most common among its k
nearest neighbours (k is a positive integer, typically small). If k = 1, then the object is simply
assigned to the class of that single nearest neighbour. Because of its simplicity it appears
to be a good idea to start with.

7.2.2 Multinomial Logistic Regression

On their own, logistic regressions are only binary classifiers, meaning that they cannot
handle target vectors with more than two classes. However, two clever extensions to logistic
regression do just that. First, in one-vs-rest logistic regression (OVR) a separate model is
trained for each class predicted whether an observation is that class or not (thus making it

D5.1 Real-time re-optimization algorithms V1.0

71

a binary classification problem). It assumes that each classification problem (e.g., class 0 or
not) is independent.

Alternatively, in multinomial logistic regression (MLR) the logistic function is replaced with
a softmax function giving the probability of being the member of certain class.

Conclusion: KNN and MLR are common value-based classification methods, though their
use for this case is questionable after discovering that we should not depend on the values.

7.3 Neural Networks

7.3.1 Fully Connected Neural Networks

Parameters

The neural network is built of 2 hidden layers with tanh activation function. Softmax is
performed on an output layer, giving the probability of belonging to each class.
CategoricalCrossentropy 2 is used as a loss function. Adam3 is used as an optimizer.

7.3.2 Recurrent neural networks

Parameters

Recurrent neural network is built of three hidden layers. The first one
is LSTM layer, second and third are Dense layers. Softmax is performed on an output layer,
giving the probability of belonging to each class. Categorical crossentropy is used as a loss
function. Adam is used as an optimizer.

In this section we will report results and give conclusions on usage of trained models for the

purpose of detecting phases on plasma cutting machine relying on energy consumption

sensors data.

In general, there are two main approaches:

• value dependent models (which use clear dataset from energy consumption sensors)

• value independent models (which use feature extraction from clear dataset)

All models can detect cutting, active state and no operation phase of plasma cutting

machine.

Firstly, we will discuss value dependent models which are considerably simple solutions.

Those are models with k-nearest neighbours’ algorithm and multinomial logistic regression.

They are very precise in detecting phases because they use parameter 'Active total power

average' which can clearly separate those phases. On the other side, there is one constraint

for using such models, and that is a fact claiming that levels of parameter 'Active total power

average' can vary if plasma cutting machine uses different power levels in situation when it

2 https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
3 https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

D5.1 Real-time re-optimization algorithms V1.0

72

cut different materials. Conclusion is that we can use those models, which are extremely

simple and fast, only if we know power levels that machine uses.

If that is not the case, there is a way to classify instances with appropriate phase, if we

extract some features from row data. Parameters THDI (total harmonic distortion current) in

point a, b and c are differently correlated in different phases and that can be used for

classifying (look at illustration below). Models can be trained with fully connected and

recurrent neural networks. Those models are value-independent but much more complex in

comparison to knn and mlr models. Furthermore, there is one constraint that we are forced

to use rolling window technique to perform calculation of correlations and other features on

certain window. Window size is five points long, meaning that, we cannot calculate features

for a particular point until we have data from whole window (delay of win_size/2, because

the observed point is in the center of the window). Nevertheless, those models proved to be

good at detecting phases but not as precise as value-based models.

7.4 Dataset for value-dependent models

Dataset for value-dependent models is just clear data from energy consumption sensors.
Useful data from energy consumption sensor look like following:

Figure 13. Visualization of data from energy consumption sensor

Sensors give more information like total harmonic distortion voltage in several points and
temperature average, but those data are irrelevant for this use-case. Illustration above
shows relevant data from energy consumption sensors that will be used in further
processing.

D5.1 Real-time re-optimization algorithms V1.0

73

7.5 Dataset for value-independent models

Extracted features are correlations between al pairs of THDI x parameters, min, max and
mean of difference of all pairs of THDI x parameters, as well as range of active power total
average in observed rolling window. Picture below shows dataset for value-independent
models.

Figure 14. Dataset for value-independent models

7.6 KNN and MLR training and results

Training dataset consists of clear data from energy consumption sensors (features are
singled out in previous section). Training dataset is perfectly balanced and contains about
1500 instances per phase. Training execution time is negligibly small. Trained model is
fastest and simplest possible and very precise at random checking as expected.
(Automatization of measuring precision process is not finished yet; only random checking
can be performed right now. That is because we do not have accurate labels, and our idea
was to use model that process video-frames and detect cutting phases to find intersect of
results from all models).

7.7 Fully connected neural network training and results

Neural network is built of 2 hidden layers with tanh activation function. Softmax is performed
on an output layer, giving the probability of belonging to each class. Categorical
Crossentropy is used as a loss function. Adam is used as an optimizer.

Figure 15. Layers of neural network

D5.1 Real-time re-optimization algorithms V1.0

74

After 100 epochs of training, accuracy increased to 98%. Results are shown below.

Figure 16. Results after training 100 epochs

7.8 Recurrent neural network training and results

Recurrent neural network is built of 3 hidden layers. The first one is LSTM layer, second and
third are Dense layers. Softmax is performed on an output layer, giving the probability of
belonging to each class. Categorical Crossentropy is used as a loss function. Adam is
used as an optimizer.

Long short-term memory (LSTM) is an artificial recurrent neural (RNN) architecture used
in the field of deep learning. Unlike standard feedforward neural network, LSTM has
feedback connections. It can not only process single data points (such as images), but also
entire sequences of data. LSTM networks are well-suited to classifying based on time series
data, since there can be lags of unknown duration between important events in a time series.
LSTMs were developed to deal with the vanishing gradient problem that can be encountered
when training traditional RNNs.

Training accuracy is about 95%, as well as validation accuracy. Results are shown below.
After 250 epochs training and validation loss become the smallest possible.

D5.1 Real-time re-optimization algorithms V1.0

75

 Figure 17. Results after training 250 epochs

D5.1 Real-time re-optimization algorithms V1.0

76

References

[1] Albahri, T. A., Khor, C. S., Elsholkami, M., & Elkamel, A. (2018). Optimal design of
petroleum refinery configuration using a model-based mixed-integer programming
approach with practical approximation. Industrial & Engineering Chemistry Research,
57(22), 7555-7565.

[2] Allahverdi, A., Ng, C-T., Cheng, T. E. and Kovalyov, Y. A survey of scheduling problems
with setup times or costs. EJOR, 187: 985-1032, 2008.

[3] Almeida Neto, E., Rodrigues, M.A., & Odloak, D. (2000). Robust predictive control of a
gasoline debutanizer column. Brazilian Journal of Chemical Engineering, 17, 4-7.

[4] Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data
envelopment analysis. Management science, 39(10), 1261-1264.

[5] Aschauer A., Roetzer F., Steinboeck A. and Kugi A. (2017). An Efficient Algorithm for
Scheduling a Flexible Job Shop with Blocking and No-Wait Constraints. IFAC-
PapersOnLine 50(1), 12490–12495.

[6] Aschauer A., Roetzer F., Steinboeck A. and Kugi A. (2018). Scheduling of a Flexible Job
Shop with Multiple Constraints. IFAC-PapersOnLine 51(11), 1293–1298.

[7] Aspnes, Y., Azar, Y. Fiat, A., Plotkin, S., and Waarts, O. On-line Routing of Virtual Circuits
with Applications to Load Balancing and Machine Scheduling. JACM 44(3):486–504, 1997.

[8] Azadeh A., Farahani M., Hosseinabadi Kalantari S.S. and Zarrin M. (2015) Solving a multi-
objective open shop problem for multi-processors under preventive maintenance.
International Journal of Advanced Manufacturing Technology

[9] Bajestani M., Banjevic A.D., Beck, J.C. (2014) Integrated maintenance planning and
production scheduling with Markovian deteriorating machine conditions. International
Journal of Production Research

[10] Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483.

[11] Badri, H. (2019). A parallel randomized approximation algorithm for single machine
scheduling with applications to ow shop scheduling.

[12] Benda, F., Braune, R., Doerner, K. F., & Hartl, R. F. (2019). A machine learning approach
for flow shop scheduling problems with alternative resources, sequence-dependent setup
times, and blocking. OR Spectrum: Quantitative Approaches in Management, 41 (4),
871{893. https://doi.org/10.1007/s00291-019-00567-

[13] Belaid R., T’Kindt V., and Esswein C. (2012). Scheduling batches in flowshop with limited
buffers in the shampoo industry. European Journal of Operational Research 223(2), 560–
572.

[14] Ben Ali, M., Sassi, M., Gossa, M. and Harrath, Y. (2011) Simultaneous scheduling of
production and maintenance tasks in the job shop. International Journal of Production
Research

[15] Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2014). Handbook on
scheduling: From theory to applications. Springer Publishing Company, Incorporated.

[16] Branda A., Castellano D. Guizzi G, and Popolo V. (2020). Metaheuristics for the flow shop
scheduling problem with maintenance activities integrated. Computers and Industrial
Engineering

[17] Brucker P., Heitmann S., Hurink J., and Nieberg T. (2006). Job-shop scheduling with limited
capacity buffers. OR Spectrum 28(2), 151–176.

https://doi.org/10.1007/s00291-019-00567-

D5.1 Real-time re-optimization algorithms V1.0

77

[18] Brucker, P. Scheduling Algorithms. Springer, 1999

[19] Cui W.W, and Zhiqiang L. (2017) Minimizing the makespan on a single machine with flexible
maintenances and jobs’ release dates. Computers and Operations Research

[20] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision
making units. European journal of operational research, 2(6), 429-444.

[21] Correa, J., Verdugo, V., Verschae, J. Splitting versus setup trade-offs for scheduling to
minimize weighted completion time. ORL, 44: 469-473, 2016.

[22] Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings
and uses. Journal of the operational research society, 45(5), 567-578.

[23] de Gouvêa, M. T., & Odloak, D. (1998). One-layer real time optimization of LPG production
in the FCC unit: procedure, advantages and disadvantages. Computers & Chemical
Engineering, 22, S191-S198.

[24] Ehram S., Sadjadi S.J., Kamran S. (2010) Scheduling flow shops with condition-based
maintenance constraint to minimize expected makespan. International Journal of Advanced
Manufacturing Technology

[25] Eroglu, D. Y. and Ozmutlu, H. C. Solution method for a large-scale loom scheduling problem
with machine eligibility and splitting property. TJTI, 108(12): 2154-2165, 2017.

[26] Emmons, I. H., & Vairaktarakis, G. (2012). Flow shop scheduling: Theoretical results,
algorithms, and applications.

[27] Eroglu, D. Y., Ozmutlu, H. C. and Ozmutlu, S. Genetic algorithm with local search for the
unrelated parallel machine scheduling problem with sequence-dependent setup times.
IJPR, 52(19):5841-5856, 2014.

[28] Goel V., Slusky M., Van Hoeve W. J., Furman K.C., and Shao Y. (2015). Constraint
programming for LNG ship scheduling and inventory management. European Journal of
Operational Research 241(3), 662–673.

[29] Groflin H., Pham D.N., and Burgy R. (2011). The flexible blocking job shop with transfer and
set-up times. Journal of Combinatorial Optimization 22(2), 121–144.

[30] Gholami M., Zandieh M., and Alem-Tabriz, A. (2009) Scheduling hybrid flow shop with
sequence-dependent setup times and machines with random breakdowns. International
Journal of Advanced Manufacturing Technology

[31] Han, Y., Geng, Z., Wang, Z., & Mu, P. (2016). Performance analysis and optimal
temperature selection of ethylene cracking furnaces: a data envelopment analysis cross-
model integrated analytic hierarchy process. Journal of analytical and applied pyrolysis,
122, 35-44.

[32] Harjunkoski, I., & Grossmann, I. E. (2002). Decomposition techniques for multistage
scheduling problems using mixed-integer and constraint programming methods. Comp.
Chem. Engng, 26, 1533-1552.

[33] Hsu, C.-C., Huang, K.-C., & Wang, F.-J. (2010). Online scheduling of workfloow applications
in grid environment. In P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, & P. M. A. Sloot
(Eds.), Advances in grid and pervasive computing (pp. 300{310). Springer Berlin
Heidelberg.

[34] Letsios, D., Bradley, J. T., Suraj, G., Misener, R. and Page, N. Approximate and robust
bounded job start scheduling for Royal Mail delivery offices. JOS, 1-22, 2021.

[35] Lee, J-H., HoonJang, H. and Kim, H-J. Iterative job splitting algorithms for parallel machine
scheduling with job splitting and setup resource constraints. JORS, 2020.

D5.1 Real-time re-optimization algorithms V1.0

78

[36] Iyer, R. R., & Grossmann, I. E. (1997). Optimal multiperiod operational planning for utility
systems. Computers & chemical engineering, 21(8), 787-800.

[37] Kemaloğlu, S., özgen Kuzu, E., & Gökçe, D. (2009). Model predictive control of a crude
distillation unit an industrial application. IFAC Proceedings Volumes, 42(11), 880-885.

[38] Khor, C. S., Yeoh, X. Q., & Shah, N. (2011). Optimal design of petroleum refinery topology
using a discrete optimization approach with logical constraints. Journal of Applied Sciences,
11(21), 3571-3578.

[39] Komaki G.M., Shaya S. and Malakooti B. (2018). Flow shop scheduling problems with
assembly operations: a review and new trends. International Journal of Production
Research 57(2), 2926-2955.

[40] Kuo, T. H., & Chang, C. T. (2008). Application of a mathematic programming model for
integrated planning and scheduling of petroleum supply networks. Industrial & engineering
chemistry research, 47(6), 1935-1954.

[41] Laborie P., Rogerie J., Shaw P., and Vilım P. (2018). IBM ILOG CP optimizer for scheduling:
20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2), 210–250.

[42] Li, W., Hui, C. W., & Li, A. (2005). Integrating CDU, FCC and product blending models into
refinery planning. Computers & chemical engineering, 29(9), 2010-2028.

[43] Li, Z., & Ierapetritou, M. (2007). Process scheduling under uncertainty: Review and
challenges. Computers and Chemical Engineering, 32, 715-727.

[44] Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA game cross-efficiency model and
its Nash equilibrium. Operations research, 56(5), 1278-1288.

[45] Logendran R. and Talkington D. (1997) Analysis of cellular and functional manufacturing
systems in the presence of machine breakdown International Journal of Production
Economics

[46] Mahale, S. (2017). Developing a real time online scheduling system for a manufacturing
service company: Achieving visibility (PhD Thesis). Lamar University.

[47] Mascis A. and Pacciarelli D. (2002). Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research 143(3), 498–517.

[48] Mete, E., & Turkay, M. (2018). Energy network optimization in an oil refinery. In Computer
Aided Chemical Engineering (Vol. 44, pp. 1897-1902).

[49] Mokhtari H. and Mehrdad D. (2015). Scheduling optimization of a stochastic flexible job-
shop system with time-varying machine failure rate. Computers and Operations Research

[50] Moradi E., Ghomi F., and Zandieh M. (2010) An efficient architecture for scheduling flexible
job-shop with machine availability constraints International Journal of Advanced
Manufacturing Technology

[51] Moro, L. F., & Pinto, J. M. (2004). Mixed-integer programming approach for short-term crude
oil scheduling. Industrial & engineering chemistry research, 43(1), 85-94.

[52] Ovacik, I., & Uzsoy, R. (2012). Decomposition methods for complex factory scheduling
problems. Spinger Science & Business Media.

[53] Perez-Gonzalez P., Fernandez-Viagas V. and Framinan J.M. (2020) Permutation flowshop
scheduling with periodic maintenance and makespan objective. Computers and Industrial
Engineering

[54] Peyro,L.F. Models and an exact method for the Unrelated Parallel Machinescheduling
problem with setups and resources. ESWA, 2020.

D5.1 Real-time re-optimization algorithms V1.0

79

[55] Peyro, L.F., Ruiz, R. and Perea, F. Reformulations and an exact algorithm for unrelated
parallel machine scheduling problems with setup times. COR, 81: 173-182, 2019

[56] Pimentel, C., Alvelos, F., Duarte, A. and Carvalho, J. Exact and heuristic approaches for lot
splitting and scheduling on identical parallel machine. IJMTM, 22(1): 39-57, 2011.

[57] Pinto, J. M., & Moro, L. F. (2000). A mixed integer model for LPG scheduling. In Computer
Aided Chemical Engineering (Vol. 8, pp. 1141-1146).

[58] Rasmussen K.M., Ejlertsen L.S.M., Pour S., Burke E.K., and Drake J.H. (2017). A hybrid
Constraint Programming / Mixed Integer Programming framework for the preventive
signaling maintenance crew scheduling problem. European Journal of Operational
Research 269(1), 341–352.

[59] Rajkumar M., Asokan P. and Vamsikrishna V. (2010). A GRASP algorithm for flexible job-
shop scheduling with maintenance constraints. International Journal of Production
Research

[60] Rahmati S., Habib A., Ahmadi A. and Karimi B. (2018). Multi-objective evolutionary
simulation based optimization mechanism for a novel stochastic reliability centered
maintenance problem. Swarm and Evolutionary Computation

[61] Ramya, G., & Chandrasekaran, M. (2013). Solving job shop scheduling problem based on
employee availability constraint. Materials and Diverse Technologies in Industry and
Manufacture, 376, 197-206. https://doi.org/10.4028/www.scienti_c.net/AMM.376.197

[62] Ruiz-Torres A.J., Paletta G., and Rym M.H. (2017). Makespan minimisation with sequence-
dependent machine deterioration and maintenance events. International Journal of
Production Research

[63] Roberti, R., and Toth P. Models and algorithms for the Asymmetric Traveling Salesman
Problem: an experimental comparison. EJTL, 1:113–133, 2012.

[64] Rosales, O.A., Bello, F. A. and Alvarez, A. Efficient metaheuristic algorithm and re-
formulations for the unrelated parallel machine scheduling problem with sequence and
machine-dependent setup times. IJAMT, 76:1705–1718, 2015.

[65] Sales, L. D. P. A., Luna, F. M. T. D., & Prata, B. D. A. (2018). An integrated optimization
and simulation model for refinery planning including external loads and product evaluation.
Brazilian Journal of Chemical Engineering, 35(1), 199-215.

[66] Serafini, P. Scheduling jobs on several machines with job splitting property. INFORMS J.
Comp., 44:531-659 1996.

[67] Steiger, C.,Walder, H., Platzner, M., & Thiele, L. (2003). Online scheduling and placement
of real-time tasks to partially reconfigurable devices. In: Proceedings of the 24th
International Real-Time Systems Symposium, Cancun, 224-235.

[68] Trabelsi W., Sauvey C., and Sauer N. (2012). Heuristics and metaheuristics for mixed
blocking constraints flowshop scheduling problems. Computers Operations Research
39(11), 2520–2527.

[69] Unal, A. T., A_gral_, S., & Ta_sk_n, Z. C. (2020). A strong integer programming formulation
for hybrid flowshop scheduling. Journal of the Operational Research Society, 71 (12), 2042-
2052. https://doi.org/10.1080/01605682.2019.165

[70] Unsal O. and Oguz C. (2013). Constraint programming approach to quay crane scheduling
problem. Transportation Research Part E 59, 108–122.

[71] Vasconcelos, C. J., Maciel Filho, R., Spandri, R., & Wolf-Maciel, M. R. (2005). On-line
optimization applied to large scale plants. In Computer Aided Chemical Engineering (Vol.
20, pp. 199-204).

https://doi.org/10.4028/www.scienti_c.net/AMM.376.197
https://doi.org/10.1080/01605682.2019.165

D5.1 Real-time re-optimization algorithms V1.0

80

[72] Wang S. and Yu J. (2010) An effective heuristic for flexible job-shop scheduling problem
with maintenance activities. Computers and Industrial Engineering

[73] Wang S. and Liu M. (2014) Two-stage hybrid flow shop scheduling with preventive
maintenance using multi-objective tabu search method. International Journal of Production
Research

[74] Wang, J-B. and Wang, J-J. Research on scheduling with job-dependent learning effect and
convex resource-dependent processing times. IJPR, 53 (19): 5826-5836, 2015.

[75] Xu S., Dong W., Jin M. and Wang L. (2020). Single-machine scheduling with fixed or flexible
maintenance. Computers and Industrial Engineering

[76] Yaurima V., Burtseva L., and Tchernykh A. (2009). Hybrid flowshop with unrelated
machines, sequence-dependent setup time, availability constraints and limited buffers.
Computers and Industrial Engineering 56(4), 1452–1463.

[77] Yu T., Sun H. and Jun H. (2021) Scheduling proportionate flow shops with preventive
machine maintenance. International Journal of Production Economics

[78] Zandieh M., Khatami A.R., Rahmati Seyed., Habib A. (2017) Flexible job shop scheduling
under condition-based maintenance: Improved version of imperialist competitive algorithm.
Applied Soft Computing Journal

[79] Zandieh, M. Fatemi Ghomi, S. M.T. (2009) Scheduling sequence-dependent setup time job
shops with preventive maintenance Naderi, International Journal of Advanced
Manufacturing Technology

[80] Zanin, A. C., de Gouvea, M. T., & Odloak, D. (2000). Industrial implementation of a real-
time optimization strategy for maximizing production of LPG in a FCC unit. Computers &
Chemical Engineering, 24(2-7), 525-531.

[81] Zanin, A. C., De Gouv̌ea, M. T., & Odloak, D. (2002). Integrating real-time optimization into
the model predictive controller of the FCC system. Control Engineering Practice, 10(8), 819-
831.

[82] Zheng Y., Lian L., and Mesghouni K. (2014) Comparative study of heuristics algorithms in
solving flexible job shop scheduling problem with condition-based maintenance. Journal of
Industrial Engineering and Management

D5.1 Real-time re-optimization algorithms V1.0

81

Appendix 1 – TUPRAS Input and Output Data Classes

The input data provided to the optimisation module are grouped in the following public
classes.

 public class ProcessInstance
 {
 public List<InputFeed> InputFeeds { set; get; }
 public List<OutputTank> OutputTanks { set; get; }
 public Specifications Specs { set; get; }
 public OptSettings Settings { set; get; }
 }

 public class InputFeed
 {
 public string InputNodeID { set; get; }
 public double IF_i { set; get; }
 public double ISU_i { set; get;
 public double IC2_i { set; get; }
 public double IC5_i { set; get; }
 }

 public class OutputTank
 {
 public string OutputNodeID { set; get; }
 public double Q_total_i { set; get; }
 public double Q_start_i { set; get; }
 public double QC5_start_i { set; get; }
 public double QC2_start_i { set; get; }
 public double QSU_start_i { set; get; }
 }

 public class Specifications
 {
 public double SU { set; get; }
 public double C2 { set; get; }
 public double C5 { set; get; }
 public double C2C5 { set; get; }
 }

 public class OptSettings
 {
 public double Horizon { set; get; }
 public double TimeToOptimize { set; get; }
 }

 public class OperationalScenarios
 {
 public List<UnitScenario> UnitScenarios { set; get; }
 }

 public class UnitScenario
 {
 public string NodeID { set; get; }
 public string ScenarioID_i_s { set; get; }
 public double E_i_s { set; get; }
 public List<LinkScenario> LinkScenarios { set; get; }

D5.1 Real-time re-optimization algorithms V1.0

82

 }

 public class LinkScenario
 {
 public string LinkID { set; get; }
 public double CAP_ij { set; get; }
 public double PF_i_j_s { set; get; }
 public double PC5_i_j_s { set; get; }
 public double PC2_i_j_s { set; get; }
 public double PSU_i_j_s { set; get; }
 }

 public class Root
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public Definition Definition { get; set; }
 }

 public class Parameter
 {
 public string Symbol { get; set; }
 public string Description { get; set; }
 public string Unit { get; set; }
 public double Value { get; set; }
 }

 public class Stock
 {
 public double Quantity { get; set; }
 public double ExtraQuantity { get; set; }
 public int Consume { get; set; }
 public bool Enabled { get; set; }
 }

 public class Node
 {
 [JsonProperty("$Type")]
 public string Type { get; set; }
 public int SpecificationMethod { get; set; }
 public string ScriptSource { get; set; }
 public List<Parameter> Parameters { get; set; }
 public string Stage { get; set; }
 public bool Solved { get; set; }
 public string Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public List<Stock> Stocks { get; set; }
 public bool? OneToOne { get; set; }
 }

 public class Flow
 {
 public string Resource { get; set; }
 public string Name { get; set; }
 public double Quantity { get; set; }
 public bool Manual { get; set; }
 public bool Calculated { get; set; }
 public string Formula { get; set; }

D5.1 Real-time re-optimization algorithms V1.0

83

 public double Factor { get; set; }
 }

 public class Link
 {
 public string Source { get; set; }
 public string Target { get; set; }
 public List<Flow> Flows { get; set; }
 public string Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 }

 public class Resource
 {
 public string Unit { get; set; }
 public string Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 }

 public class Definition
 {
 public List<Node> Nodes { get; set; }
 public List<Link> Links { get; set; }
 public object Stages { get; set; }
 public List<Resource> Resources { get; set; }
 public List<Parameter> Parameters { get; set; }
 public double Tolerance { get; set; }
 }

The output data provided by the optimisation module are grouped in the following public classes.

 public class Solution
 {
 public List<SelectedScenario> SolutionScenarios { set; get; }
 public double TotalEnergy { set; get; }
 public List<SpecsKPIs> OutputKPIs { set; get; }
 public SolutionKPIs SolKPIs { set; get; }
 }

 public class SelectedScenario
 {
 public string NodeID { set; get; }
 public string ScenarioID { set; get; }
 public string OptID { set; get; }
 }

 public class SolutionKPIs
 {
 public bool FoundSolution { set; get; }
 public double TimeToSolveMillisec { set; get; }
 public double TimeToInitializeMillisec { set; get; }
 }

 public class SpecsKPIs
 {
 public string OutputNodeID { set; get; }

D5.1 Real-time re-optimization algorithms V1.0

84

 public double Quantity { set; get; }
 public double SUperc { set; get; }
 public double C2perc { set; get; }
 public double C5perc { set; get; }
 public double C2C5perc { set; get; }
 }

D5.1 Real-time re-optimization algorithms V1.0

85

Appendix 2 – PIACENZA Input and Output Data Classes

The input data provided to the optimisation module are grouped in the following public
classes.

public class GeneralInfo
 {
 public string startDate { get; set; }
 public string endDate { get; set; }
 public int currentTotalSetupTime {get; set; }
 }

 public class Order
 {
 public string status { get; set; }
 public int chainID { get; set; }
 public int partID { get; set; }.
 public int loomID { get; set; }
 public double targetMeters { get; set; }
 public double kStrokes { get; set; }
 public string deliveryDate { get; set; }
 public string type { get; set; }
 public int fabricType { get; set; }
 public int ca { get; set; }
 public int cc { get; set; }
 public int strokesPerMeter { get; set; }
 public int yarns { get; set; }
 public int drawing { get; set; }
 public int variant { get; set; }
 public int incom { get; set; }
 public int comb { get; set; }
 public int combHeight { get; set; }
 }

public class Loom
 {
 public int loomID { get; set; }
 public int loomSpeed { get; set; } /
 }

public class Worker

 {
 public int workGroups { get; set; }
 public string startDatetime { get; set; }
 public string endDatetime { get; set; }
 }

public class Root
 {
 public GeneralInfo general_info { get; set; }
 public List<Order> orders { get; set; }
 public List<Loom> looms { get; set; }
 public List<Worker> workers { get; set; }
 }

D5.1 Real-time re-optimization algorithms V1.0

86

The output data provided by the optimisation module are grouped in the following public classes.

public class Order
 {
 public int chainID { get; set; }
 public int partID { get; set; }
 public string type { get; set; }
 public string deliveryDate { get; set; },
 public int loomID { get; set; }.
 public int setupTime { get; set; }
 public string setupStartTime { get; set; }
 public string setupEndTime { get; set; }
 public string processStartTime { get; set; }
 public string processEndTime { get; set; }
 public int processingTime { get; set; }.
 public int targetMeters { get; set; }
 public double tardiness { get; set;
 }

 public class LoomsOrderSequence
 {
 public string _loomID { get; set; }
 }

 public class ObjectiveValues
 {
 public int makespan { get; set; }
 public double totalTardiness { get; set; }
 }

 public class Root
 {
 public List<Order> orders { get; set; }
 public LoomsOrderSequence loomsOrderSequence { get; set; }
 public ObjectiveValues objectiveValues { get; set; }
 }

D5.1 Real-time re-optimization algorithms V1.0

87

Appendix 3 – CONTINENTAL Input and Output Data Classes

Class Workstation
Name Type

WorkplaceID [PK] Int

WorkplaceTypeID [FK] Int

ProductionLineID [FK] Int

SequenceInLine Int

WorkplaceName String

Class WorkplaceTypes
Name Type

WorkplaceTypeID Int

WorkplaceTypeName String

Class ProductionLineTypes
Name Type

ProductionLineTypeID Int

ProductionLineType String

Class ProductionLines
Name Type

ProductionLineID Int

ProductionLineTypeID Int

ProductionLineName String

Class Storage_Zones
Name Type

StorageZoneID [PK] Int

StorageZoneName String

StorageZoneCapacity Int

Class Product_Inventory
Name Type

ProductID Int

ProductQuantity Int

StorageZoneID Int

Class Resource_Inventory
Name Type

ResourceID Int

Quantity Int

D5.1 Real-time re-optimization algorithms V1.0

88

Class: Product_Family
Name Type

ProductFamilyID [PK] Int

ProductFamilyName String

ProductFamilyDescription String

Class Product
Name Type

ProductID Int

ProductName String

ProductFamilyID Int

SourceLineTypeID Int

EndLineTypeID Int

ProductDescription String

Class Product_Family_Setup_Times
Name Type

ProductFamilyID Int

ProductionLineTypeID Int

SetupTime [sec] Double

Class Production_Orders
Name Type

OrderID Int

OrderName String

ProductID Int

Quantity Int

MaxQuantity Int

ReleaseDate Datetime

Priority Int

DueDate Datetime

Class Product_Processing_Times
Name Type

ProductID Int

WorkplaceID Int

IdealProcessingTime [sec] Double

RealProcessingTime [sec] Double

Class Machine_Maintenance_Activities
WorkplaceID Int

MaintenanceStartTime Double

MaintenanceEndTime Double

MaintenanceDurationTime Double

D5.1 Real-time re-optimization algorithms V1.0

89

Class Production BOM
WorkplaceID Int

RequiredProductID Int

Multiplicity Double

ProductID Int

Class Resource BOM
WorkplaceID Int

ResourceID Int

Multiplicity Double

ProductID Int

Class Resources

ResourceID Int

ResourceName String

ResourceDescription String

Class Production Schedule

JobID Int

OrderID Int

Quantity Int

LineID Int

SequenceID Int

Class Scheduled Maintenance Activities

WorkstationID Int

MaintenanceStart DateTime

MaintenanceEnd DateTime

MaintenanceDuration Int

Class UnScheduled Maintenance Activities

WorkstationID Int

MaintenanceStart DateTime

MaintenanceEnd DateTime

MaintenanceDuration Int

D5.1 Real-time re-optimization algorithms V1.0

90

Appendix 4 – BRC Input and Output Data Classes

The input data provided to the optimisation module are grouped in the following public
classes.

public class GeneralInfo
 {

public string startDate { get; set; }
public string endDate { get; set; }
public int currentTotalSetupTime {get; set; }
public float lambda { get; set; }

 }

public class InputOrder
 {
 public int orderID { get; set; }

public string deliveryDate { get; set; }
 }

public class InputJob
{
 public int jobID { get; set; }

public int parentID { get; set; }
public string deliveryDate { get; set; }
public string jobType { get; set; }

}

public class InputMachine
{

public int machineID { get; set; }
public string machineStatus { get; set; }
public string machineType { get; set; }

}

public class ProcessingAndSetupTimes
{

public int machineID { get; set; }
public int jobID { get; set; }
public float setupTime { get; set; }
public float processingTime { get; set; }

}

The output data provided by the optimisation module are grouped in the following public classes.

public class OutputOrder
{

public int orderID { get; set; }
public int tardyJobs { get; set; }

}

public class OuputJob
{
 public int jobID { get; set; }

public int parentID { get; set; }

D5.1 Real-time re-optimization algorithms V1.0

91

public List<Machine> machineID { get; set; }
public List<string> startTime { get; set; }
public List<string> completionTime { get; set; }

}
public class ΟutputMachine
{
 public int machineID { get; set; }
 public List<int> jobID { get; set; }
}

public class ObjectiveValues
{
 public int makespan { get; set; }
 public int totalTardiness { get; set; }
 public double totalLateness { get; set; }
}

D5.1 Real-time re-optimization algorithms V1.0

92

Appendix 5 – Analytics Classes

z public class Datapoint
{

private string timestamp;
private float value;
public string timestampGetSet {get; set;};
public string valueGetSet {get; set;};

}

public class AnalysisValue
{

private string analysisName;
private string timestamp;
private float value;
private bool outlier;
public string analysisNameGetSet {get; set;};
public string timestampGetSet {get; set;};
public float valueGetSet {get; set;};
public bool outlierGetSet {get; set;};

}

public class Data
{

private string mongoId;
private string instanceId;
private string arrivedTimestamp;
private string type;
private string startTimestamp;
private string endTimestamp;
private Dictionary <string, List<Datapoint>> parameterValues;
public string mongoIdGetSet {get; set;};
public string instanceIdGetSet {get; set;};
public string arrivedTimestampGetSet {get; set;};
public string typeGetSet {get; set;};
public string startTimestampGetSet {get; set;};
public string endTimestampGetSet {get; set;};
public Dictionary parameterValuesGetSet {get; set;};

}

public class ModelDataResult
{

private string mongoId;
private string instanceId;
private string arrivedTimestamp;
private string dataId;
private Dictionary <string, List<AnalysisValue>> analysisValues;
private Dictionary<string, List<string>> outlierDatapoints;
public string mongoIdGetSet {get; set;};
public string instanceIdGetSet {get; set;};
public string arrivedTimestampGetSet {get; set;};
public string dataIdGetSet {get; set;};
public Dictionary analysisValuesGetSet {get; set;};
public Dictionary outlierDatapointsGetSet {get; set;};

}

public class DataProvider
{

D5.1 Real-time re-optimization algorithms V1.0

93

private string ipAddress;
private int port;
private string databaseName;
private string username;
private string password;
public string ipAddressGetSet {get; set;};
public int portGetSet {get; set;};
public string databaseNameGetSet {get; set;};
public string usernameGetSet {get; set;};
public string passwordGetSet {get; set;};
public bool writeData(Data object);
public Data readData(string instanceId);
public bool writeModelDataResult(ModelDataResult object);
public Data readModelDataResult(string instanceId);

}

public class FTPReader
{

private string ipAddress;
private int port;
private string username;
private string password;
public string ipAddressGetSet {get; set;};
public int portGetSet {get; set;};
public string usernameGetSet {get; set;};
public string passwordGetSet {get; set;};
public bool readDataFromServer(string instanceId);

}

public class Executor
{

private DataProvider dp;
private FTPReader ftp;
public DataProvider ipAddressGetSet {get; set;};
public FTPReader portGetSet {get; set;};
public List<AnalysisValue> perform_knn(Data object);
public List<AnalysisValue> perform_mlr(Data object);
public List<AnalysisValue> perform_nn(Data object);
public List<AnalysisValue> perform_rnn(Data object);
public List<AnalysisValue> perform_video_processing(Data object);
public ModelDataResult generate_MDR(List<List<AnalysisValue>>);

}

