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Executive Summary 

This deliverable reports on the specification and implementation of the State-of-the-art 
Optimization Methods of the FACTLOG project, reflecting the work performed in the context 
of the project Task 5.1 Robust Optimization Methods, and the outcomes thereof. Following 
the analysis of the pilot scenarios relevant to the needs for optimization, in parallel with the 
elaboration of the different use cases and system requirements, the progressive 
implementation of the different modules which are dependent on optimization as well as the 
ones which optimization depends on, this deliverable proceeds with describing the 
optimization methods as well as the initial version of the optimization toolkit of the FACTLOG 
ecosystem.  

Starting from the toolkit itself, it is designed to be modular, expandable, and capable to be 
adapted and introduced in different cases, starting from the pilots themselves. It can solve 
short- mid- and long- term production optimization problems and depending on the different 
pilots (ongoing and post the projects lifecycle) and their needs, it can address the provision 
of optimal production schedules (e.g., BRC) to re-scheduling (e.g., PIA) and re-configuration 
of setting of different production units (e.g., TUPRAS), taking into account all process and 
business constraints. The Optimization as a Service module, named optEngine consists of 
different layers (as presented in D1.3 Architecture and Technical Specification) is 
responsible for the interconnection of the Optimization Module to the remaining FACTLOG 
modules (e.g ECTs) enabling them to initiate an optimization round or receive the 
optimization’s round results.  

Besides the development of the optimization engine this Task had the goal of providing a 
theoretical approach to solving the different identified optimization problems of the pilots. 
Starting from the TUPRAS case relevant to the Oil Refineries and to the LPG Production 
process, the role of optimization was to handle the recovery to on-specs LPG production in 
the most energy efficient way. To do so, the optimization module identifies the most energy 
efficient combination of operational scenarios for all process units involved in the LPG 
purification process and proposes the settings combinations to the shopfloor (or ECT) to 
take the appropriate decision and action. The TUPRAS case was solved utilizing a MIP 
model, based on a typical flow, and blending modelling approach that also incorporates a 
binary decision variable for each operational scenario of each process unit. This approach 
enables the optimization engine to take under consideration all involved units in the process, 
something that also pushed the boundaries of research (as current solutions focus on single 
unit optimization). Through experimentation we found that the behavior of our proposed 
approach given different time horizons for recovery will be suitable for real field application. 

Moving forward from TUPRAS to the second pilot and respective problem solved by the 
optimization module we have the PIA case. In the PIACENZA case, a main goal as in the 
overall modern textile industry is to increase productivity while reducing production costs. 
The case has been challenging in terms of optimization as it has the inherent properties of 
weaving scheduling (job splitting and sequence dependent setup times) in parallel to 
additional setup constrains as in this case the number of setups that can be performed 
simultaneously on different machines is restricted due to a limited number of setup workers 
and daily setup time is also bounded. The PIACENZA case was solved utilizing a mixed 
integer linear programming (MILP) formulation that captures the elaborate structure of the 
weaving process extended by two combinatorial heuristics that differ on the way they 
perform job splitting and assignment to machines, to handle large real instances. Through 
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experimentation we found that the solutions provide the best policies to balance makespan, 
number of tardy jobs and total tardiness over weekly instances. 

The third case in the FACTLOG project the Optimization Toolkit deals with is the 
CONTINENTAL case. This is a discrete automotive part manufacturing environment that is 
modelled as a 2-stage assembly flow shop with resource constraints. Key challenge is the 
integration of maintenance planning and scheduling together with the scheduling of 
production orders at the production lines. To that end, an analytics module is providing 
maintenance windows and the goal is to schedule maintenance activities during periods that 
will have a minimum impact on the schedule in terms of makespan and tardiness. Another 
capability that is provided is dynamic re-scheduling to capture new urgent orders and 
unscheduled machine breakdowns. A rigorous Constraint Programming formulation is 
proposed for modeling and solving the problem. Preliminary results on benchmark data sets 
validate the applicability of the model and demonstrate the efficiency, effectiveness and 
scalability of the proposed CP approach.  

Lastly, the fourth case in the FACTLOG project the Optimization Toolkit handles is the BRC 
Steel production case. This is a multistage flowshop with parallel machines at each stage. 
The main challenge in this particular case was the lack of digitized information. That 
combined with the inherent difficulty in needing cranes to unload / load machines create 
important bottlenecks in the production process. The goal of optimization in this case was 
to find the optimal production schedule in relation to the makespan or the number of tardy 
jobs. The BRC case was solved utilizing MILP for an extended flexible multistage flowshop 
problem with machine dependent setup times. Preliminary experimentation showed that the 
MIP model can handle instances of medium size quite easily and can provide production 
policies that balance between the criterion of minimum makespan and tardy jobs.      

In addition to the optimization toolkit, we provide a novel approach for detecting variations 
in the process structure (phases) based on processing energy consumption data. These 
variations define the structure of a process and as such are important for the optimization of 
the process execution, as defined in our Cognitive Factory Model (reported in deliverable 
D3.1). Sensors for measuring energy consumption are very common in the industry 
processes. Since it is planned to install additional energy sensors in BRC and PIACENZA 
pilots, these two will be used for the validation phase. 

That is, all sections related to optimisation document the research and innovation work on 
optimization (AUEB, UNIPI), while the last section brings in an indicative enhancement and 
interplay of the analytics, as presented in D3.1 (NISSA). 
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1 Introduction 

1.1 Purpose and Scope 

WP5 will provide the optimization for the FACTLOG project. To this end, T5.1 Real-time re-
optimization as part of cognitive twins constitutes the first approach in solving the different 
cases based on the problems identified taking under consideration the overall FACTLOG 
approach (and other modules). In this task, the optimization related to the extension of the 
abilities of the Enhanced Cognitive Twins is conducted and the output is the actual solving 
approaches taking under consideration textbook and state-of-the-art solution approaches in 
terms of exact methods and heuristics.  

This deliverable reports on the former aspects reflecting the work performed in T5.1, Real-
time re-optimization as part of cognitive twins following the insight gained by the previous 
deliverables and respective work done in interconnected Tasks and Work packages. D5.1 
elaborates on the optimization solutions capable to be invokes by the ECTs or Human 
Operators under different circumstances.  

1.2 Relation with other Deliverables 

The starting point for this deliverable is the ‘D1.1 Reference Scenarios, KPIs and Datasets’, 
where the pilot cases were examined from the needs of optimization as well and initial KPIs 
as well as available datasets were identified to feed optimization. Furthermore, ‘D1.2 
Cognitive Factory Framework ‘presents the role of optimization in the FACTLOG cognition 
cycle as well as its potential interactions with other modules. Additionally, D5.1 strongly 
relates with ‘D1.3 FACTLOG System Architecture and Technical Specifications’ where the 
Optimization modules interconnection with all other modules is initially presented. Lastly it 
relates with the ‘D6.5 Integrated Package and Platform’ where the actual interconnection of 
the Optimization Toolkit in the FACTLOG is explained. D5.1 provides input to ‘D5.2 Robust 
and energy-aware planning and scheduling’ and ‘D5.3 FACTLOG optimization toolkit and 
service’. Also, and in parallel to other deliverables, it will feed the optimization approach in 
respective deliverables as ‘D3.4 Proactive Cognitive Plants’, ‘D6.2 Data collection 
Framework’ and ‘D6.6 Integrated Package and Platform’.  

1.3 Structure of the Document 

Section 2 presents the optEngine, being the connection interface of the Optimization Toolkit 
to the FACTLOG remaining modules. From then on, the sections document the work done 
on each pilot in terms of optimization. Specifically, they present (a) the Pilot case from the 
optimization perspective, (b) the identified optimization problem, (c) the literature review 
conducted by the optimization team to account for a thorough scientific coverage of currently 
existing solutions, (d) the solution approach for the case, (e) the mathematical formulation 
of the pilot problem, and (f) its solution and benchmarking. This presentation flow appears 
in Section 3 regarding the TUPRAS optimization, in Section 4 on the PIACENZA case, in 
Section 5 concerning the CONTINENTAL case and in Section 6 presenting the BRC case. 
Extending the optimization related aspects, Section 7 present an enhancement and an 
interplay with indicative analytics of FACTLOG. It concludes with the Appendices, where for 
each case the structure of the input and output of the optEngine for all cases is presented.  

 



D5.1 Real-time re-optimization algorithms V1.0 

 

 

11 

2 Optimization-As-a-Service 

In this section we describe the optimization module developed and deployed in the 
framework of this project. Hereafter, we will refer to this module as optEngine.  

OptEngine works as a shell around the optimization services build for the purposes of this 
project. Its architecture follows an asynchronous approach and is agnostic to optimization-
specific data requirements. That is, optEngine receives, stores and forwards the 
optimization data to the optimization service requested by the end-user. The structure of this 
section goes as follows: in Section 2.1 we provide a detailed description of optEngine’s 
architecture; in Section 2.2 we provide optEngine’s technology stack; in Section 2.3 we 
provide a detailed documentation of optEngine’s web API with which the end-user interacts. 

2.1 Functional Requirements 

The use cases of this shell are listed below:  

• Use Case 1 (UC1): Authenticate user. 

• Use Case 2 (UC2): List the available optimization services. 

• Use Case 3 (UC3): Submit a new optimization job. 

• Use Case 4 (UC4): Get the status and progress of an optimization job. 

• Use Case 5 (UC5): Cancel an ongoing optimization job. 

• Use Case 6 (UC6): Get the solution of a complete optimization job. 

• Use Case 7 (UC7): Store the solution of a complete optimization job. 

The image below illustrates the set of these functional requirements:  

 

Figure 1. optEng Functional Requirements 
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Use Case 1 Authenticate user. 

Brief description This use case states the actions taken to authenticate a user. 

Primary Actors User 

Pre-conditions The user is registered to optEngine. 

Post-conditions The user is authenticated. 

Basic flows Tasks Information required 

1. User includes the base64-encoded 
username:password combination to every action. 

Username, password 

2. The system authenticates the user.  

Alternative flows Tasks Information required 

1. If an error occurs, the system returns the respective 
error code. 

Error_code 

 

Use Case 2 List the available optimization services. 

Brief description This use case states the actions taken in order to list the available optimization services. 

Primary Actors User 

Pre-conditions The user is registered and authenticated. 

Post-conditions The user receives a list with the available optimization services. 

Basic flows Tasks Information required 

1. User requests the list with the available optimization 
services. 

 

2. The system returns the available optimization services Route_ids 

Alternative flows Tasks Information required 

If an error occurs, the system returns the respective error 
code. 

Error_code 

 

Use Case 3 Submit a new optimization job. 

Brief description This use case states the actions taken to submit a new optimization job. 

Primary Actors User 

Pre-conditions The user is registered and authenticated. 

Post-conditions The user receives a unique identifier, the status, and the progress of the submitted 
optimization job. 



D5.1 Real-time re-optimization algorithms V1.0 

 

 

13 

Basic flows Tasks Information required 

1. User submits the optimization data along with the 
optimization service route id. 

Optimization_data, 
route_id 

2. The system forwards the submitted optimization job to 
the respective optimization service. 

Optimization_data, 
route_id 

3. The system returns the unique identifier, the status 
and progress of the submitted job. 

Uuid, status, progress 

Alternative flows Tasks Information required 

If an error occurs, the system returns the respective error 
code. 

Error_code 

 

Use Case 4 Get the status and progress of an optimization job. 

Brief description This use case states the actions taken to retrieve, the status and progress of a 
submitted optimization job. 

Primary Actors User 

Pre-conditions The user is registered and authenticated. 

The user has submitted an optimization job. 

Post-conditions The user receives unique identifier and the status of the submitted optimization job. 

Basic flows Tasks Information required 

1. User submits the unique identifier of the optimization 
job. 

uuid 

2. The system returns the unique identifier, the status and 
progress of the submitted job. 

Uuid, status, progress 

Alternative flows Tasks Information required 

If an error occurs, the system returns the respective error 
code. 

Error_code 

 

Use Case 5 Cancel an ongoing optimization job. 

Brief description This use case states the actions taken to cancel an ongoing optimization job. 

Primary Actors User 

Pre-conditions The user is registered and authenticated. 

The user has submitted an optimization job. 

The optimization job is not finished yet. 

Post-conditions The user receives unique identifier and the status of the submitted optimization job. 
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Basic flows Tasks Information required 

1. User submits the unique identifier of the optimization 
job. 

uuid 

2. The system returns the unique identifier, the status 
and progress of the submitted job. 

Uuid, status, progress 

Alternative flows Tasks Information required 

If an error occurs, the system returns the respective error 
code. 

Error_code 

 

Use Case 6 Get the solution of a complete optimization job. 

Brief description This use case states the actions taken to get the solution of a submitted optimization 
job 

Primary Actors User 

Pre-conditions The user is registered and authenticated. 

The user has submitted an optimization job. 

The optimization job is successfully complete. 

Post-conditions The user receives unique identifier and the solution data. 

Basic flows Tasks Information required 

1. User submits the unique identifier of the optimization 
job. 

uuid 

2. The system returns the unique identifier and the solution 
data of the submitted job. 

Uuid, solution_data 

Alternative flows Tasks Information required 

If an error occurs, the system returns the respective error 
code. 

Error_code 

 

Use Case 7 Store the solution of a complete optimization job. 

Brief description This use case states the actions taken to store the solution of a complete optimization 
job 

Primary Actors Optimization Services 

Pre-conditions The user has submitted an optimization job. 

The optimization job is successfully complete. 

Post-conditions The solution data is successfully stored. 

Basic flows Tasks Information required 
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1. The Optimization Services submit the uuid and the 
solution data. 

Uuid, solution_data 

2. The system stores the solution data and updates the 
status of the optimization job to complete. 

Uuid, solution_data, 
status 

Alternative flows Tasks Information required 

If an error occurs, the system returns the respective error 
code. 

Error_code 

 

The class diagram below depicts the data requirements of optEngine.  

 

Figure 2. optEngine Data Requirements 

2.2 Architectural view 

OptEngine works as a shell around the optimization. Its architecture follows an 
asynchronous approach and is agnostic to optimization-specific data requirements. That is, 
optEngine receives, stores, and forwards the optimization data to the optimization service 
requested by the end-user.  

Optimization requests along with the respective data are received via a web API. This API 
allows the actions described in the previous section. The communication with the API 
requires authentication, is encrypted (https) and asynchronous, i.e., once an optimization 
job is submitted, the callee does not wait for its completion. 

Data stores within optEngine work in a twofold manner:  

• Permanent storage via a database (db): this is where optimization requests and the 
related data are permanently stored or retrieved and updated when necessary. 
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• Temporal storage via the use of queues: this is where optimization data is stored up 
to the point where they get consumed by the optimization services that read these 
queues.  

Regarding the optimization data, both the db and the queues are data-agnostic following a 
general json schema. This allows the storage, permanent and temporal, of different data 
structures required from different optimization services.  

The employed queues allow the asynchronous processing of an optimization job. 
Additionally, by being durable they ensure that when optEngine or an optimization service 
fails, the job along with data are available in the respective queue. This means that 
optEngine, upon reception of a new optimization job, forwards it to the requested 
optimization service via a queue.  Each optimization service listens for a new optimization 
job to a specific queue and writes status/progress updates to another queue. Last, 
optEngine listens to (a) a queue for status/progress updates and (b) multiple queues for 
optimization results. 

The flow of data and the architectural approach of optEngine are depicted below.  

 

 

Figure 3. optEngine data Flow 

2.3 Technology Stack 

The technologies used to develop optEngine are the following:  

• Java 8 

• Spring-boot 2.4.5 

• Springdoc openAPI 1.5.2 

• Hibernate 1.0.0 

• PostgreSQL 11 

• RabbitMQ 3.8.16 

• Docker 18.09.7 
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Figure 4. optEngine data stack 

2.4 Web API documentation 

2.4.1 API calls documentation 
Method GET 

Path /route/list 

Description Get the routes list. 

Parameters Name Description 

Authorization(h
eader) 

The base-64 encoded string with the user credentials 
username:password used for Basic authorization. 

Responses Status Body  Description 

200 RoutesDTO Found the result of the optimization job with the 
supplied uuid. 

500 AdoptApiError An internal error has occurred. 

 

Method POST 

Path /opt/job 

Description Submit a new optimization job. 

Parameters Name Description 

Authorization(h
eader) 

The base-64 encoded string with the user credentials 
username:password used for Basic authorization. 

Body JobSubmissionDTO 

Responses Status Body  Description 

200 JobStatusDTO Successfully submitted new job. 

400 AdoptApiError Invalid route or no data supplied. 

500 AdoptApiError An internal error has occurred. 
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Method GET 

Path /opt/job 

Description Get the status of a submitted optimization job. 

Parameters Name Description 

Uuid The unique identifier of the optimization job. 

Authorization(h
eader) 

The base-64 encoded string with the user credentials 
username:password used for Basic authorization. 

Responses Status Body Description 

200 JobStatusDTO Found the optimization job with the supplied uuid. 

400 AdoptApiError Invalid/no optimization job uuid supplied. 

404 AdoptApiError No optimization job with the supplied uuid found. 

500 AdoptApiError An internal error has occurred. 

 

Method DELETE 

Path /opt/job 

Description Kill a submitted optimization job. 

Parameters Name Description 

Uuid The unique identifier of the optimization job. 

Authorization(h
eader) 

The base-64 encoded string with the user credentials 
username:password used for Basic authorization. 

Responses Status Body Description 

200 JobStatusDTO Optimization job with supplied uuid successfully 
killed. 

400 AdoptApiError Invalid/no optimization job uuid supplied. 

404 AdoptApiError No optimization job with the supplied uuid found. 

500 AdoptApiError An internal error has occurred. 

 

Method GET 

Path /opt/job/result 

Description Get the result of a completed optimization job. 
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Parameters Name Description 

Uuid The unique identifier of the optimization job. 

Authorization(h
eader) 

The base-64 encoded string with the user credentials 
username:password used for Basic authorization. 

Responses Status Body Description 

200 JobResultDTO Found the result of the optimization job with the 
supplied uuid. 

400 AdoptApiError Invalid/no optimization job uuid supplied. 

404 AdoptApiError No result found for the specified optimization job 
uuid. 

500 AdoptApiError An internal error has occurred. 

 

2.4.2 JSON bodies description 
 

Name RoutesDTO 

Description Contains information about the available routes. 

Attributes Name Description 

uuid Unique identifier of the call. 

routes The array with the available routes. 

Example { 

  "routes": [ 

    "string" 

  ], 

  "uuid": "c11dc261-d8a4-4174-897f-3864defee150" 

} 

 

 

Name JobSubmissionDTO 

Description Contains information about the optimization job and is submitted to trigger the optimization 
service. 

Attributes Name Description 

route Unique identifier of the optimization job category. 

data The required data for the optimization job. The schema is custom to 
each type of optimization job. 
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Example { 

  "route": "max-flow", 

  "data": { 

    "empty": true, 

    "additionalProp1": {}, 

    "additionalProp2": {}, 

    "additionalProp3": {} 

  } 

} 

 

Name JobStatusDTO 

Description Contains information related to the status of the optimization job. 

Attributes Name Description 

submitted_at The submission date of the optimization job in millis. 

progress The percentage (%) of optimization job progress. 

uuid Unique identifier of the optimization job. 

status The status of the optimization job. 0=PROCESSING, 1=COMPLETE, 
2=FAILED, 3=KILLED. 

Example { 

  "submitted_at": 1623427969000, 

  "progress": 67.5, 

  "uuid": "c11dc261-d8a4-4174-897f-3864defee150", 

  "status": 0 

} 

 

Name JobResultDTO 

Description Contains information about the solution of the optimization job. 

Attributes Name Description 

uuid Unique identifier of the optimization job. 

produced_at The production date of the optimization result in millis. 

data The required data for the optimization job. The schema is custom to 
each type of optimization job. 

Example { 

  "data": { 

    "empty": true, 

    "additionalProp1": {}, 

    "additionalProp2": {}, 

    "additionalProp3": {} 

  }, 

  "produced_at": 1623427969000, 

  "uuid": "c11dc261-d8a4-4174-897f-3864defee150" 

} 
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Name AdoptApiError 

Description Contains information about API errors. 

Attributes Name Description 

path The URL. 

message The error message. 

uuid The unique identifier of the optimization job. 

status The http status. 

Example { 

  "path": "/opt/job", 

  "message": "Internal Server Error", 

  "uuid": "c11dc261-d8a4-4174-897f-3864defee150", 

  "status": 500 

} 
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3 Oil Refineries: Pilot Case by TUPRAS 

3.1 Introduction 

The Liquified Petroleum Gas (LPG) is a fuel produced as a by-product of natural gas and oil 
refining industry. The production of LPG must adhere to certain quality specifications 
regarding specific impurities (e.g., Sulphur, Naphtha and Ethane). In this regard, LPG 
purification is a complex process involving different types of interconnected process units. 
Within this process, anomalies that may arise in any given process unit may lead to off-
specs situations, i.e., the LPG in the collection tank may deviate from the desired 
specifications. In such cases, actions need to be taken to drive on-specs recovery, thus 
ensuring the final mixture complies with the regulations. 

In the context of the FACTLOG project, the TUPRAS pilot outlines the critical aspects which 
should be targeted in order to recover from an off-specs situation in the most energy-efficient 
manner. These aspects relate to (a) the early detection of off-specs LPG production, (b) the 
exploration of the root-cause and (c) the on-specs recovery of LPG production. Hence, 
within FACTLOG, the role of Optimization is to handle point (c). That is, the digital twin of 
the LPG production process is enhanced with optimization capabilities to drive on-specs 
recovery while minimizing the energy consumption required for this effort. In a nutshell, our 
optimization approach is based upon the identification of the most energy efficient 
combination of operational scenarios for all process units involved in the LPG purification 
process to drive on-specs recovery of the produced LPG.  

More specifically, in the TUPRAS refinery that is examined within FACTLOG, the LPG 
accumulated in the final tank is obtained from the aggregation of outputs of ten different 
input feeds. Each input feed is purified via a set of subsequent and (in some cases) 
interconnected process units that remove impurities (i.e., debutanizers, deethanizers and 
LPG DEA units). Each process unit can be considered (and hence modelled) as a function 
that transforms input to output; this function can either be stated explicitly by a mathematical 
formulation or implicitly derived by data-driven approaches such as a machine learning (ML) 
model. In this regard, the operational settings of each different process unit (e.g., top and/or 
bottom temperature, reboiler flow, pressure etc) constitute the inputs of each process unit, 
while the resulting reduction of impurities in the flow of the LPG stream, the reduction of 
LPG flow itself, and the energy consumed constitute the output of each process unit. The 
mapping of all possible inputs to their corresponding outputs for a specific process unit 
constitute the unit’s operational scenarios. That is, each operational scenario is fully 
specified by (i) the operational settings of the process unit (pressure, temperatures, etc.), 
(ii) the reduction in flow rates and impurities of outputs from the unit (products) and (iii) the 
corresponding energy (heat and/or electricity) consumption.  

Figure 5 presents these three basic ingredients of each operational scenario. These 
scenarios are produced by the modelling module that may incorporate both mathematical 
functions as well as analytical and ML models for each process unit. However, it must be 
noted that Optimization only requires the reduction in flow and impurities and the 
corresponding energy consumption for each scenario. This information for each operational 
scenario of each process unit along with real-time production data (e.g., flow and 
composition of input feeds, quantity of LPG and impurities in the final tank etc) and real-time 
data (e.g., energy consumed) are the inputs of our optimization solution method. Based on 
this input and the production process scheme, our optimization method produces and solves 
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a Mixed Integer Programming (MIP) model (detailed in Section 3.3.3). The obtained solution 
has a global perspective, since optimization examines the whole process and provides the 
operational scenario that needs to be adopted for each process unit involved in LPG 
production to drive on-specs recovery in the most energy efficient manner. In particular, the 
solution constitutes of an assignment of a specific operational scenario to each process unit 
involved. Each such operational scenario corresponds to specific operational settings (e.g., 
increase of temperature at the top of the unit by a specified number of degrees) which need 
to be applied to the corresponding unit; these proposed settings can also be used by the 
Simulation module to evaluate the proposed solution.  

 

 

Figure 5. Operational scenarios and the modules producing them (modelling and analytics/ML) and consuming them 
(optimization and simulation)  

3.2 Literature Review 

Several challenges of oil refining industry have been met by employing optimization. Khor 
et al (2011) and Albahri et al (2018) determine the optimal topology configuration of 
petroleum refineries based on mixed integer linear programming (MILP).  Concerning the 
energy management of refinery operations, Iyer and Grossmann (1997) and Mete and 
Turkay (2018) employ MILP to derive the optimum combinations of the equipment that 
minimize the energy costs. Sales et al (2018) employed nonlinear optimization and 
simulation of refinery units to obtain a production planning for a refinery that maximizes 
profit. Also, planning and scheduling issues concerning the petroleum supply network of 
typical refineries are addressed by utilizing MILP in Moro and Pinto (2004) as well as in Kuo 
and Chang (2008). Li et al (2005) criticised the use of linear models for crude distillation unit 
(CDU), Fluid Catalytic Cracking (FCC) and product blending in refinery planning. They 
proposed instead simplified empirical nonlinear process models. Kemaloglu et al (2009) 
designed a controller for predictive control of crude oil preheat and distillation column of a 
crude oil unit in Tupras Izmit Refinery. 

In the context of FACTLOG, we focus on the LPG production process. Pinto and Moro 
(2000) developed a MILP model to generate a schedule for LPG refinery management so 
as to optimize the selection of storage facilities that are used to receive these products and 
to feed the product pipeline. In addition, several studies are devoted to the maximization of 
the production of LPG specifically in the FCC unit. Such studies are conducted by Gouvea 
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and Odloak (1998), Zanin et al (2000) and Zanin et al (2002), and they are based on non-
linear optimization models to accommodate the operation of the corresponding predictive 
controller. In a similar vein, Vasconcelos et al (2005) resort to sequential quadratic 
programming for the maximization of the LPG and gasoline profit. Almeida Neto et al (2000) 
studied a debutanizer unit, from the gasoline stream producing LPG, by incorporating linear 
models to Model Predictive Control (MPC). 

 

3.3 Optimization model and solution method 

3.3.1 LPG purification process 

 

Figure 6. Level 2 process model of TUPRAS LPG purification plant 

The LPG purification process is a complex procedure that involves different interconnected 
process units, i.e., debutanizers, deethanizers and LPG DEA. Figure 6 provides a schematic 
of this process. It includes three CDU debutanizer units and two platformer debutanizer units 
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whose outputs are mixed, respectively. Moreover, it includes an FCC, a DCU and an MQD 
debutanizer. Τhere are also two hydrocracker (HYC) debutanizers and deethanizers (these 
process the input feed sequentially in two different streams). Moreover, each of the ten input 
streams ranging from F1 to F10 represents the individual stream that enters each specific 
unit. Junctions of streams, denoted by JC symbol, represent LPG streams (e.g., LPG1, 
LPG2 and LPG3) that are mixed before entering the corresponding LPG DEA unit 
(responsible for removing sulphur from the LPG stream). 

Hence, initially, each feed is treated to remove carbon-based impurities (e.g., C2, C5, etc.). 
Depending on the input feed, this step may require processing from a debutanizer (see F1-
F6, F9, F10 in Figure 6) or from both a debutanizer and a deethanizer (see F7-F8 in Figure 
6). Next, depending on the type of the debutanizer in the first process stage, the output of 
the LPG may be further processed by a LPG DEA unit to remove sulphur-based impurities. 
At the final stage of the process, the purified LPG flows are aggregated in the final LPG tank.  

  

3.3.2 Optimization Model 
 
Contrary to the existing work in the literature, our modelling approach is not confined to a 
specific process unit but incorporates information from all units that are involved in LPG 
production process, offering a global optimization tool. Once an off-specs situation has been 
identified, the optimization module is triggered to provide a plan on how to recover to on-
specs LPG production at a global level, with the minimum energy requirements within a 
given time-frame. In fact, the proposed plan is derived from the optimal solution and can be 
mapped to explicit operational settings for each process unit (e.g., configurations for each 
process unit about temperature, pressure, etc.). We consider each specific set of operational 
settings of each unit as an operational scenario. For instance, a debutanizer receives a 
specific feed and applies temperature (at the top and at the bottom) as well as pressure to 
remove impurities, i.e., C2 (and lighter by-products) from the top and C5 (and heavier by-
products) from the bottom. The different settings that may be applied (e.g., higher/lower 
temperature at the top/bottom with different levels of pressure applied) result in different 
outcomes (level of impurities removed) and accordingly correspond to different energy 
consumption levels. 

In general, higher energy consumption (i.e., higher costs) leads to a higher removal of 
impurities, hence on-specs recovery demands more energy (cost). However, the optimal 
level of energy and the required actions for recovery are unknown. For this purpose, we 
build our model with the aim to minimize the energy consumption while satisfying the 
production specifications of LPG and by incorporating the operational scenarios of each 
process unit. We represent the LPG purification process via a MIP model, based on a typical 
flow and blending modelling approach that also incorporates a binary decision variable for 
each operational scenario of each process unit. In this manner, for each unit, the 
optimization module selects whether a specific operational scenario is applied or not. Thus, 
the proposed model determines collectively the optimal combination of settings for all 
process units by directly selecting the optimal operational scenarios for each one of them. 

Note that this modelling approach has enabled us to avoid directly incorporating 
temperature, pressure etc and their relation to energy consumption as variables in the 
model, and hence to avoid introducing within the model the non-linear relationships that 
these impose. That is, we have removed the non-linearity from the model (hence obtaining 
a simpler model to optimize) in a rather intuitive manner, by introducing binary decision 
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variables (based on the operational scenarios) that model the actual decisions that a 
process engineer needs to take when planning for on-specs recovery, i.e., how to change 
the operational settings of each process unit. 

In what follows, we provide the notation of the sets, the constants and the variables that are 
employed in the MIP model. The quantities are measured in kilos (kg), the time intervals are 
given in hours and flow rate in kilos per hour (kg/hour). Also, the feed to the debutanizers is 
assumed stable for the whole period. 

The sets that are used to formally define the MIP model are provided below: 
 

Sets: 
Iproc: Set of process units (includes debutanizers, deethanizers, LPG DEA, etc.) 
Ijunc: Set of junctions that aggregate different flows into one 
Iunits = Iproc ∪ Ijunc: Set of all process units and junctions 
Iinput: Set of input units of the process (i.e., the raw feed flows) 
Ioutput: Set of output units of the process (i.e., in this case, only the final LPG tank) 
Si: Set of operational scenarios for unit i, ∀ 𝑖 ∈  Iunits 

𝑵𝒊
−

 : Set of units (neighbors) to which unit i ∈  Iinput ∪ Iunits sends flow 

𝑵𝒊
+

 : Set of units (neighbors) from which unit i ∈  Iunits ∪ Ioutput receives flow 

Po(Ni): Set of units (neighbors), 𝑁𝑖 ≡ 𝑁𝑖
− or 𝑁𝑖 ≡ 𝑁𝑖

+, that are in the path of the process 

towards any output unit in Ioutput to which i ∈ Iinput ∪ Iunits sends flow 

 
The constants that are used to formally define the MIP model are provided below: 

Constants: 
H ∈ N+: Time horizon (in hours) 
𝑬𝒊

𝒔 ∈ 𝑹: Energy consumption of unit Iunits running operational scenario s ∈ Si for a unit of time 

(i.e., for an hour) 

IFi ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of raw feed i ∈ Iinput 
CAPij  ∈ 𝑹, i ∈ Iunits: Capacity, i.e., maximum flow rate (kg/hour) that unit i can forward 
towards unit j ∈ 𝑁𝑖

− 

𝑷𝑭𝒊𝒋
𝒔 ∈ 𝑹, i,j ∈ Iunits: Percentage of flow rate that flows through unit i under operational 

scenario s towards unit j ∈ 𝑁𝑖
− 

𝑸𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of LPG in i ∈ Ioutput (i.e., the LPG tank) at the start of the recovery 

𝑸𝒕𝒐𝒕𝒂𝒍
𝒊 ∈ 𝑹: Total quantity (kg) that i ∈ Ioutput (i.e., the LPG tank) can hold 

𝑰𝑺𝑼𝒊 ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of Sulphur within the LPG flowing from the raw 
feed i ∈ Iinput 

𝑷𝑺𝑼𝒊𝒋
𝒔 ∈ 𝑹: Percentage of flow rate of Sulphur for unit i running operational scenario s ∈ Si 

towards unit j ∈ 𝑁𝑖
−. Accordingly, the percentage reduction of Sulphur is 1 − 𝑃𝑆𝑈𝑖𝑗

𝑠 . Note that 

𝑃𝑆𝑈𝑖𝑗
𝑠  = 100% if the process unit does not remove Sulphur (e.g., for debutanizers). 

𝑸𝑺𝑼𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of Sulphur in i ∈ Ioutput (i.e., the LPG tank) at the start of the 

recovery 

𝑺𝑷𝑺𝑼 ∈ 𝑹: Specifications (%) for max percentage of Sulphur in the LPG tank 
IC2i ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of C2 within the LPG flowing from the raw feed i 
∈ Iinput 
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𝑷𝑪𝟐𝒊𝒋
𝒔 ∈ 𝑹, i ∈ Iunits: Percentage of flow rate of C2 for unit i running operational scenario s ∈ 

Si towards unit j ∈ 𝑁𝑖
−. Accordingly, the percentage reduction of C2 is 1 − 𝑃𝐶2𝑖𝑗

𝑠 . Note that 

𝑃𝐶2𝑖𝑗
𝑠 = 100% if the process unit does not remove C2, e.g., for LPG DEA 

𝑸𝑪𝟐𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of C2, in i ∈ Iinput (i.e., the LPG tank) at the start of the recovery 

𝑺𝑷𝑪𝟐 ∈ 𝑹: Specifications (%) for max percentage of C2 in the LPG tank 

IC5i ∈ 𝑹, i ∈ Iinput: Input flow rate (kg/hour) of C5 within the LPG flowing from the raw feed i 
∈ Iinput 

𝑷𝑪𝟓𝒊𝒋
𝒔 ∈ 𝑹, i ∈ Iunits: Percentage of flow rate of C5 for unit i running operational scenario s ∈ 

Si towards unit j ∈ 𝑁𝑖
−. Accordingly, the percentage reduction of C5 is 1 − 𝑃𝐶5𝑖𝑗

𝑠 . Note that 

𝑃𝐶5𝑖𝑗
𝑠 = 100% if the process unit does not remove C5, e.g., for LPG DEA 

𝑸𝑪𝟓𝒔𝒕𝒂𝒓𝒕
𝒊 ∈ 𝑹: Quantity (kg) of C5, in i ∈ Iinput (i.e., the LPG tank) at the start of the recovery 

𝑺𝑷𝑪𝟓 ∈ 𝑹: Specifications (%) for max percentage of C5 in the LPG tank 
𝑺𝑷𝑪𝟐+𝑪𝟓 ∈ 𝑹: Specifications (%) for max percentage of sum of C2 and C5 in the LPG tank 

 
The variables that are used to formally define the MIP model are provided below: 

Variables: 
𝒙𝒊

𝒔 ∈ {𝟎, 𝟏}: Unit i ∈ unit Iunits runs operational scenario s ∈ Si or not  

qi ∈ R: Quantity of LPG (kg) in output i ∈ Ioutput (i.e., final LPG tank) at the end of the recovery 
(i.e., at the end of hour H) 
qSUi ∈ R: Quantity of Sulphur in output i ∈ Ioutput (i.e., final LPG tank) at the end of the 
recovery (i.e., at the end of hour H) 
qC2i ∈ R: Quantity of C2 in output i ∈ Ioutput (i.e., final LPG tank) at the end of the recovery 
(i.e., at the end of hour H) 
qC5i ∈ R: Quantity of C5 in output i ∈ Ioutput (i.e., final LPG tank) at the end of the recovery 
(i.e., at the end of hour H) 
𝒇𝒊𝒋

𝒔 ∈ 𝑹: Flow rate (kg/hour) of unit i ∈ Iunits running operational scenario s ∈ Si towards unit j 

∈ 𝑁𝑖
− 

𝒇𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of unit i ∈ Iinput ∪ Iunits towards unit j ∈ 𝑁𝑖

− 

𝒇𝑺𝑼𝒊𝒋
𝒔 ∈ 𝑹: Flow rate (kg/hour) of Sulphur flowing through unit i ∈ Iinput ∪ Iunits running 

operational scenario s ∈ Si towards unit j ∈ 𝑁𝑖
− 

𝒇𝑺𝑼𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of Sulphur flowing through unit i ∈ Iinput ∪ Iunits running 

operational towards unit j ∈ 𝑁𝑖
− 

𝒇𝑪𝟐𝒊𝒋
𝒔 ∈ 𝑹: Flow rate (kg/hour) of C2 flowing through unit i ∈ Iinput ∪ Iunits running operational 

scenario s ∈ Si towards unit j ∈ 𝑁𝑖
− 

𝒇𝑪𝟐𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of C2 flowing through unit i ∈ Iinput ∪ Iunits towards unit j ∈ 𝑁𝑖

− 

𝒇𝑪𝟓𝒊𝒋
𝒔 ∈ 𝑹: Flow rate (kg/hour) of C5 flowing through unit i ∈ Iinput ∪ Iunits running operational 

scenario s ∈ Si towards unit j ∈ 𝑁𝑖
− 

𝒇𝑪𝟓𝒊𝒋
∗ ∈ 𝑹: Flow rate (kg/hour) of C5 flowing through unit i ∈ Iinput ∪ Iunits towards unit j ∈ 𝑁𝑖

− 

 
We present below the MIP model that enables identifying the optimal combination of 
operational scenarios for the process units that are involved in the LPG purification process. 
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3.3.3 Description of the MIP model 
 
The set of constraints (3.1)-(3.39) define the solution space (i.e., the set of all feasible 
solutions), while the sum of the energy consumption of all operational scenarios of the 
process units is minimized in the objective function of the model. Notice that the objective 
function can be easily modified to support other objectives as well. The set of constraints 
(3.1) ensure that only one operational scenario will be selected for each process unit. 
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Constraints (3.2) introduce the input feed. The set of constraints (3.3)-(3.4) ensure that the 
flow rate 𝑓𝑖𝑗

∗  of unit i to the unit j, will be equal to the flow rate 𝑓𝑖𝑗
𝑠 that corresponds to the 

unique selected operational scenario for unit i. Also, the flow rate that a unit receives from 
its predecessors is calculated by the set of constraints (3.5), reduced by the reduction of 
flow at each predecessor. At the end of the recovery, the quantity of LPG that will be 
contained in the final LPG tank is calculated by the set of constraints (3.6)-(3.7). 

Similarly to constraints (3.2)-(3.7), the constraints (3.12)-(3.26) are designed to control the 
flow rate and the concentration of the impurities in the LPG flow. Specifically, the set of 
constraints (3.8)-(3.11) guarantee that the flow rate of sulphur for each unit will be decided 
by the flow rate of the selected operational scenario. Also, the concentration of Sulphur in 
the final LPG tank, at the end of the recovery, is calculated by the set of constraints (3.12)-
(3.13), with constraint (3.13) applying the constraint emanating from the specification for 
sulphur in LPG. Accordingly, the set of constraints (3.14)-(3.19) handle the flow rate and the 
concentration of ethane (C2), while the set of constraints (3.20)-(3.25) the corresponding 
measures of pentane (C5). Finally, constraints (3.26) conform the quantities of ethane and 
pentane (qC2i and qC5i) with the permissible limits of these impurities in the LPG. 
 

3.3.4 Reducing the number of operational scenarios 
 
Since the number of processing units is pre-set (according to the LPG production schema 
of the refinery), the solution space is dependent upon the number of possible operational 
scenarios per process unit. Reducing the number of operational scenarios per unit will result 
in reducing the size of the problem and hence offer computational savings and improvement 
of the performance time of the model.  

One way to reduce the number of operational scenarios is by utilizing Data Envelopment 
Analysis (DEA) assessment (Charnes et al, 1978). In particular, we may consider the 
operational scenarios as entities to be evaluated. Thus, we may first measure their 
performance via linear programming models in the context of a DEA assessment. Note that 
this method has been utilized before in oil refinery production; Han et al (2016) employed 
DEA for the selection of optimal temperature method of ethylene cracking furnaces. Apart 
from providing an efficiency score for each scenario, we may also develop a procedure for 
ranking them (see the methods proposed in (Doyle and Green, 1994; Andersen and 
Petersen, 1993; Liang et al, 2008). The procedure will serve as a filter for the MIP model by 
excluding many operational scenarios, i.e., by reducing the number of the decision variables 
of the model.  

Being aware of the real-time demands that may arise for instances with massive number of 
operational scenarios and especially under a real-time re-optimization setting, we have 
further explored other possible methods (besides DEA) for discriminating among them 
without utilizing optimization. Our proposed procedure enables us to reduce considerably 
the size of the MIP model. In essence, what our procedure does is to identify the dominating 
operational scenarios that need to be introduced in the model and remove all others.  

More specifically, consider the case of a CDU debutanizer, where the operational scenarios 
include four measures-criteria (f1-f4), i.e., energy consumption, reduction rate of C2, 
reduction rate of C5 and LPG quantity that will be purified. These values are the components 
of each operational scenario, which we view as a vector in a four-dimensional space.  Let 
OS1 and OS2 be two operational scenarios. We say that OS1 performs better than OS2 in 
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criterion fi (denoted by fi(OS1) > fi(OS2)) if we prefer the value of OS1 to that of OS2 for that 
criterion. Similarly, we may say that OS1 performs at least as good as OS2 and denote it by 
fi(OS1) ≥ fi(OS2). Then, OS1 dominates OS2 (denoted by OS1 > OS2) if for all criteria {f1,…,f4 
} it holds that fi(OS1) ≥ fi(OS2), i=1,…,4, with at least one such relationship being satisfied 

as a strict inequality, i.e., fi(OS1) > fi(OS2) for some i=1,…,4. Notice that lower levels of 
energy consumption are desired, thus this criterion is modified accordingly to accommodate 
the above dominance relationship. 

Our proposed method runs in two steps. We first calculate the convex hull of the operational 
scenarios by employing the quickhull algorithm developed by Barber et al (1996) to identify 
the extreme points, i.e., the extreme operational scenarios in the convex hull that includes 
all of them. Next, we apply a technique that is based on dominance relationships to derive 
from the extreme points of the convex hull only the dominant ones. These operational 
scenarios will be introduced in the MIP model at the last step of the assessment. 

 

3.4 Computational Experience 

3.4.1 Experimental setting 
 
In this section, we provide an experimental analysis to examine the scalability of the 
proposed approach, i.e., both the scalability of the proposed MIP model (Section 3.3.3) and 
of a pre-processing step that reduces the number of operational scenarios (Section 3.3.4) 
Moreover, we examine the quality of the calculated solution with respect to the provided 
time horizon for on-specs recovery. 

More specifically, since the number of process units and the corresponding process schema 
is predefined within the TUPRAS pilot LPG purification process (see Figure 6), we first 
examine our proposed approach with respect to the number of possible operational 
scenarios that each process unit may have. In this regard, we have run a set of experiments 
that examines how the computational time grows with the number of possible operational 
scenarios per process unit (Section 3.4.2).  

Moreover, given the size of the problems that our proposed approach can handle (in terms 
of the number of operational scenarios per unit) so as to provide the optimal on-specs 
recovery plan within a realistic solution time frame for real-time optimization, we have 
developed and examined experimentally a two-step pre-processing method that identifies 
dominations between the different operational scenarios and removes any operational 
scenarios that are dominated (Section 3.3.4). These are operational scenarios which the 
MIP solver would not select for a unit since being dominated by others (e.g., we may remove 
an operational scenario which removes less impurities and requires more energy than 
another one for the same unit, since the former should never be chosen over the latter within 
an optimal solution), 

Finally, we examine how the quality of solution changes (regarding the objective function, 
i.e., the average energy consumed per hour by the whole LPG purification process) with 
respect to the allowed time horizon to achieve on-specs recovery.  

To run the experiments, we have created lab data that we generate randomly by following 
the directions that TUPRAS has provided. A uniform distribution random number generator 
has been utilised for all randomisations. In this regard, we have generated random data for: 
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• all input feeds (LPG flow and impurity composition), 

• the operational scenarios of each unit (LPG flow towards tank, impurity composition 
and energy consumed), and 

• the output tank (capacity of the tank, quantity of LPG in the tank at the time that 
optimization is called, and impurity composition of the tank content). 
 

The code has been developed in C#, with .NET Core 3.1, utilizing the Mixed Integer 
Programming solver of OR-Tools Version 8.1.84871. Our testing platform is a 3.00 GHz 64-
bit Inter(R) Core (TM) i5-8500 machine with 8 GB RAM which runs Windows 10 Pro. In what 
follows, we report results from 5 independent runs for each case examined. 

 

3.4.2 Evaluating the scalability of the MIP model  
 
We commence our experimental analysis by examining the scalability of the proposed MIP 
model with respect to the number of operational scenarios for each unit. Table 1 presents 
the corresponding computational results, providing the time to initialize the MIP model, the 
time to solve it as well as the total time in seconds. Note that we have run experiments for 
different time horizons allowed for on-specs recovery (i.e., 6, 12, 18 and 24 hours). Here, 
we have reported results indicatively for a 12-hours horizon. Note that results did not differ 
significantly between different time horizons; this was expected, since the time horizon does 
not affect the size of the problem (i.e., does not alter the number of constraints nor the 
number of variables). 

Our experiments show that for instances in which each unit has at up to 100 operational 
scenarios, the total required time is approximately 1 second or less. For instances in which 
each unit has up to 1000 operational scenarios, the time required spans from a few seconds 
to 1.5 minute, which is still an acceptable time for real-time optimization. This situation 
changes for a larger number of operational scenarios. Indicatively, for 2000 operational 
scenarios per unit, the time required is approximately 10.5 minutes, while for 5000 
operational scenarios per unit, the solution time is more than 1.5 hour. The latter is not 
surprising, given the size of the corresponding problem. Indicatively, an instance with 5000 
operational scenarios per unit involves solving a MIP with approximately 500.000 variables. 

 

# Operational 
scenarios per unit 

Time to initialize 
(in seconds) 

Time to solve  
(in seconds) 

Total time  
(in seconds) 

10 0.002 0.073 0.075 

20 0.004 0.195 0.199 

30 0.005 0.174 0.179 

40 0.007 0.329 0.336 

50 0.008 0.342 0.35 

60 0.014 0.632 0.646 

70 0.015 0.843 0.858 

80 0.016 0.833 0.849 

90 0.023 0.747 0.77 

100 0.021 1.133 1.154 

 

1 https://developers.google.com/optimization/ 

https://developers.google.com/optimization/
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# Operational 
scenarios per unit 

Time to initialize 
(in seconds) 

Time to solve  
(in seconds) 

Total time  
(in seconds) 

200 0.045 4.617 4.662 

300 0.065 7.87 7.935 

400 0.085 12.067 12.152 

500 0.119 17.222 17.341 

600 0.15 35.627 35.777 

700 0.175 55.21 55.385 

800 0.19 51.235 51.425 

900 0.229 63.415 63.644 

1000 0.254 94.565 94.819 

2000 0.498 630.01 630.508 

3000 0.703 1503.603 1504.306 

4000 0.979 3172.77 3173.749 

5000 1.168 5672.515 5673.683 
 

Table 1. Scalability of the MIP model with respect to the number of possible operational scenarios per unit 

Since the solution of instances incorporating more than 1000 operational scenarios per unit 
requires computational time that is non-realistic in a real-time system, in the next section 
(Section 3.4.3) we examine computationally the procedure proposed in Section 3.3.4 for 
reducing the number of operational scenarios based on dominance relationships.  
 

3.4.3 Reducing the number of operational scenarios 
 
We apply a two-step procedure that significantly reduces the number of operational 
scenarios, which should be incorporated in the proposed MIP model for the final 
assessment. In the first step we calculate the extreme operational scenarios (i.e., convex 
hull) and in the second step we further discriminate among the scenarios by identifying the 
dominating ones. Table 2 exhibits the results obtained from experimentation with the 
operational scenarios of a CDU debutanizer. Each operational scenario includes measures-
criteria, i.e., energy consumption, reduction rate of C2, reduction rate of C5 and LPG 
quantity that will be purified. It is evident that the number of operational scenarios is 
drastically reduced by our procedure. Thus, a significantly small number of operational 
scenarios will be introduced in the MIP, rendering it effective for the demands of a real-time 
optimization system. 

 

# 
Operational 
scenarios  

# Operational 
scenarios in 
convex hull 

# Remained 
operational 
scenarios 

Convex 
hull time (in 

seconds) 

Dominance 
time (in 

seconds) 

Total time 
(in 

seconds) 

3000 280 26 0.010 0.001 0.010 

4000 314 30 0.011 0.001 0.012 

5000 316 35 0.013 0.001 0.013 

10000 380 39 0.014 0.001 0.014 

20000 500 44 0.019 0.001 0.020 

50000 632 48 0.042 0.001 0.044 

75000 704 59 0.070 0.001 0.071 

100000 742 58 0.078 0.001 0.080 

200000 971 78 0.189 0.002 0.191 
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# 
Operational 
scenarios  

# Operational 
scenarios in 
convex hull 

# Remained 
operational 
scenarios 

Convex 
hull time (in 

seconds) 

Dominance 
time (in 

seconds) 

Total time 
(in 

seconds) 

500000 1134 83 0.446 0.002 0.448 

750000 1364 78 0.577 0.002 0.579 

1000000 1342 79 0.890 0.002 0.891 

2000000 1577 71 1.692 0.002 1.694 

3000000 1756 75 2.285 0.002 2.287 

5000000 1869 94 4.410 0.003 4.413 

 

Table 2.  Efficiency and time required for the pre-processing steps removing dominated operational scenarios for a CDU 
debutanizer 

3.4.4 Evaluating the quality of solutions vs. the time horizon 
In this final part of our experimental analysis, we examine the trade-off between energy 
consumption and the time required for recovery. We wish to compare the recovery plans 
produced for different time horizons in terms of the total energy consumption required for 
recovery (i.e., the objective function which we wish to minimize) over the corresponding 
hours. That is, we wish to compare the different time horizons based on the hourly energy 
consumption of the whole LPG purification process, when optimized for on-specs recovery. 
Note that for the needs of this experiment, and to be able to highlight the difference between 
alternative recovery plans, we have assumed a very large interval of values for hourly energy 
consumption per unit (indicatively within the interval [1, 1000]) from which we have randomly 
selected the consumption corresponding to each operational scenario.  

Results are presented in Table 3. It is apparent that as the number of operational scenarios 
per unit increases, the hourly energy consumption decreases accordingly for all time 
horizons. This is expected, since more options lead to be better solutions. When examining 
each case separately, we see that the value of the hourly energy consumption either 
decreases or remains the same as the time horizon increases. This again is expected. A 
decrease in value corresponds to the case where, given a larger time horizon, an operational 
scenario that consumes less energy can be preferred over other scenarios which may be 
more efficient in removing impurities (and hence drive on-specs recovery faster) but 
consume more energy. On the other hand, when the value remains the same, the identified 
operational scenarios are the optimal ones for both time horizons. Overall, the experiments 
presented in Table 3 validate our expectations on the behavior of our proposed approach 
given different time horizons for recovery. 

 Energy consumption per hours (objective function / hours)  

# Operational 
scenarios per unit 

Horizon 6 h Horizon 12 h Horizon 18 h Horizon 24 h 

10 1673 1673 1673 1673 

20 688 688 688 554 

30 501 501 404 404 

40 416 416 416 248 

50 291 220 175 175 

60 272 272 215 215 

70 243 184 142 142 

80 273 217 155 155 

90 215 215 215 215 
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 Energy consumption per hours (objective function / hours)  

# Operational 
scenarios per unit 

Horizon 6 h Horizon 12 h Horizon 18 h Horizon 24 h 

100 193 193 106 70 

200 99 99 99 81 

300 85 85 85 85 

400 58 50 48 52 

500 56 56 56 56 

600 51 51 37 20 

700 45 45 45 37 

800 43 43 34 27 

900 36 29 29 29 

1000 34 34 34 34 

 

Table 3. The effect of the time horizon allowed for on-specs recovery to the objective function 
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4 Textile Industry: Pilot Case by PIACENZA 

4.1 Introduction 

Increasing productivity while reducing production costs has been essential in modern textile 
plants in terms of business sustainability. Scheduling algorithms (Brucker, 1999) offer a 
viable and effective tool to improve productivity, by optimally allocating the available 
resources. A typical scheduling problem in textile considers a set of articles/orders to be 
woven by a set of looms with respect to their delivery dates. Each order is linked to the 
production of a specific fabric type and is accompanied by a positive quantity, while the 
looms are unrelated, meaning that each loom operates on different speeds for different 
orders. The aim is typically to find a schedule with the minimum makespan, i.e., the time 
that the last executed order is finished.  

Two properties make weaving scheduling a challenging problem: job splitting (a job can be 
split in different machines), and sequence-dependent setup times (per pairs of jobs and per 
machine). In practice, the latter is justified by the fact that different fabric types require 
different warp chains for processing, thus imposing machine setup times (to replace the 
warp chain) from a few hours to a few days (Serafini, 1996). Our work is focused on the 
weaving scheduling of PIACENZA, a textile enterprise in north Italy that manufactures 
woollen fabrics for luxury clothing brands. Its production environment is a parallel weaving 
environment composed of multiple type of looms, operating at different speeds. Weaving 
scheduling in PIACENZA adopts all the above-described job and machine properties, plus 
setup resource constraints. Specifically, the number of setups that can be performed 
simultaneously on different machines is restricted due to a limited number of setup workers 
and daily setup time is also bounded. We should note that the seminal work of Serafini 
(1996) signifies the addition of setup resource constraints to the standard weaving 
scheduling as a severe challenge. 

In Section 4.2 we present a brief literature review on weaving scheduling and address the 
significance and technical novelty of PIACENZA’s case. In Section 4.3 we propose a formal 
definition of our scheduling problem, address its computational complexity and propose a 
mixed integer linear programming (MILP) formulation that captures the elaborate structure 
of the weaving process. To handle large real instances, we also propose two combinatorial 
heuristics that differ on the way they perform job splitting and assignment to machines. We 
experiment with several weekly instances on both MILP (using a standard solver) and 
heuristics to establish the computational efficiency of our approach in Section 4.4.  

As we note, although typically the trade-off between delivery dates, available machines and 
setup resources allows the scheduler to deliver each job on time, due to the COVID-19 
pandemic many jobs arrive late on the weaving department, while others become tighter in 
terms of deadline. To improve resource management while avoiding a further increase of 
tardy jobs, we propose, in Section 4.4, a strategy that dedicates an appropriate number of 
machines to samples (i.e., jobs with small quantity and tight deadlines) while allocating the 
rest to regular jobs (i.e., jobs with large quantity and loose deadlines). 
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4.2 Literature Review 

As above mentioned, the main two properties that increase the computational complexity of 
the weaving scheduling problem are the job splitting and the sequence-dependent setup 
times. Both properties have been studied extensively under abstract models of various 
machine environments and optimisation criteria (Allahverdi et al., 2008; Rosales et al., 2015; 
Peyro, 2020; Lee et al., 2020; Peyro et al., 2019; Correa et al., 2016) and tackled through 
exact methods, approximation algorithms and metaheuristics. The weaving scheduling 
problem has also been well-studied and admits exact polynomial time algorithms for special 
cases where setup times are independent and job splitting is relaxed to preemption (Serafini, 
1996), as well as MILP models and efficient metaheuristics for the general case (Eroglu and 
Ozmutlu, 2017; Eroglu et al., 2014; Rosales et al., 2015; Wang and Wang, 2015; Pimentel 
et al., 2011).  

According to our knowledge, the most relevant previous work appears in (Lee et al., 2020; 
Peyro, 2020). Lee et al., (2020) proposed near optimal heuristics for a simplified model with 
identical machines, job splitting, multiple setup resources and fixed (independent) setup 
times per job, under the makespan minimisation objective. Peyro (2020) proposes a 
Benders Decomposition approach and heuristics for the general case of unrelated 
machines, sequence-dependent setup times and multiple setup resources, again under the 
makespan minimisation objective. However, none of these works combine all the complex 
properties needed for PIACENZA’s case. Interestingly, Lee et al. (2020) referred to a case 
combining job-splitting, sequence-dependent setup times, unrelated machines and setup 
resource constraints as an open research direction. 

4.3 Model and/or Solution method (Demonstration) 

Let J be the set of jobs (orders), and M the set of machines (looms). Each machine m has 
a fixed speed sm (in strokes/min) and each job i has a quantity vi (in meters) of the fabric 
type that should be produced on one or more machines. Each fabric type is associated with 
a list of attributes such as   
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Table 4. Model Parameters and Decision Variables 

number of yarns, strokes per meter, “annotability” and “chainability” codes, comb height and 
code and complexity index, which can be used to calculate the processing time of each job 
i in machine m, namely pi,m= q•u/sm, where q is the quantity of job i and ui the number of 
strokes/meter for the fabric type of job i, as well as the setup time Si,j,m of a job j succeeding 
job i, j≠i, on machine m. To present our mixed integer linear program (MILP), we summarize 
the notation in Table 4. 
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The overall goal is to minimise the makespan of the schedule, denoted as Cmax. Since setup 
times are strictly positive, it is easy to prove that each machine processes at most one part 
of each split job. We refer to the above problem as the Weaving Scheduling problem, which 
is NP-hard even if machines are identical, job setup times are fixed (and independent) and 
R=1 (Letsios et al., 2021). 
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(MILP) is partly inspired by formulations on special cases (Lee et al., 2020; Rosales et al., 
2015), extending them to capture the elaborate structure of Weaving Scheduling.  More 
specifically, Constraints (4.1)-(4.4), (4.7)-(4.11), (4.19), are used to ensure the feasibility of 
job assignment, respecting that each machine processes at most one single part of each 
split job. Constraints (4.5)-(4.6) allow for job splitting with respect to the quantity limits. 
Constraints (4.12), (4.13), (4.16) ensure that the setup of each job part precedes its 
execution on the corresponding machine and calculate its completion times. Constraints 
(4.14), (4.15) are setup resource constraints, and Constraints (4.17), (4.18) provide tight 
lower bounds. 

4.3.1 Combinatorial Heuristics 
 
Using an exact commercial solver (Gurobi 9.1) on (MILP), we can solve many daily 
instances (i.e., ones with orders arriving at the same date) in a few minutes either optimally 
or by a small gap. Hence (MILP) could be used to support short-term goals like scheduling 
jobs in a daily manner. However, to fully support the business needs of a weaving enterprise, 
including mid- and long-term goals, it is important to efficiently tackle larger real instances. 

Next, we propose two combinatorial heuristics, GH1 and GH2, which differ in the way they 
handle job splitting and assignment of each part of a job to a machine, while handling the 
sequence-dependent setup time and setup resources in the same way. Table 5 summarizes 
the notation used in the present and the following section.  

 

Table 5. Algorithms and experiments parameters and abreviations  

GH1, performs an iterative exact splitting and assignment of jobs (parts) to machines using 
a MILP formulation (which is a subproblem of Weaving Scheduling where setup resource 
constraints are not taken into account)  that minimises makespan subject to Constraints 
(4.5), (4.6) (to ensure that quantity limits are satisfied), (4.20) that calculates a lower bound 
on the time needed to process the assigned part of each job on each machine and (4.21) 
that limits the number of possible job assignments to max_assgn. GH1 starts by setting the 
maximum possible value of max_assgn = |J|•|M| and after each iteration decreases it by 1, 
to exploit all possible exact solutions (of increased or decreased job splitting potential) 
choosing the best among them. It terminates when the number of jobs exceeds the possible 
assignments i.e., max_assgn = |J| - 1, as there is no possibility to assign all jobs. 
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On the other hand, GH2 performs a greedy job splitting dividing job quantities into parts 

equal to the lower bound Li: For each job i with qi≥2Li we create 𝛼 =⌈
𝑞𝑖

𝐿𝑖
⌉ job parts of quantity 

equal to 
𝑞𝑖

𝛼
. Then the job parts are ordered according to the LPT rule, to prevent the resulted 

schedule from unbalanced machine loads (i.e., when a job with large processing time is 
scheduled last). Then assignment process is similar to the one proposed by Aspnes et al. 
(1997) for makespan minimisation on unrelated processors: For the LPT order of job parts, 

it assigns each part i to the machine k = 𝑎𝑟𝑔𝑚𝑖𝑛𝑚∈𝑀{𝜆
𝑙𝑑𝑚+ 𝑆𝑗,𝑖,𝑚+ 𝑄𝑖,𝑚

𝑢𝑖
𝑠𝑚

 
 −  𝜆𝑙𝑑𝑚} where j is 

the last job executed on m before i. 

Both GH1 and GH2 are then following the next two stages. Stage A: For each machine, the 
assigned job parts are scheduled optimally by reducing the problem to aTSP, where nodes 
correspond to jobs' parts and the distance between nodes to sequence-dependent setup 
time plus processing time of the corresponding job part; the exact approach of Roberti and 
Toth (2012) is proved quite efficient for our instances. Stage B: For each machine in 
decreasing order of load and each available group of workers, we compute the earliest time 
that a job part can start its setup, respecting the order of job parts from Stage A. Note that, 
in Stage B, by starting from the most loaded machine, we significantly reduce the effect of 
idle intervals between consecutive job executions on the final makespan. Moreover, in the 
case of GH2, we do not violate the assumption that each machine processes at most one 
single part of each split job, as the setup time between parts of the same job is equal to 
zero, and thus in the aTSP solution they will be consequently ordered. 

Summarizing, GH1 performs an exhaustive job splitting and assignment supported by an 
exact solver, while GH2 computes a fast greedy assignment of all possible job parts to 
machines. 

4.4 Computational Experience 

The experiments are performed on 27 weekly instances, from 01/2020 - 07/2020. The 
number of jobs per instance ranges from 7-69, the available groups of workers and number 
of machines per week are R=3 and 12 respectively, while setup times receive values from 
the set {2h,4h,6h}. The experiments ran on a 64-bit Windows PC (Intel i5, 2.5GHz CPU 
speed, 8GB RAM) using Python 3.7.2 for GH1, GH2 and GUROBI 9.1 (Python API for 
(MILP) and MILP of GH1).  

We tested (MILP) on the above dataset, with a 2-hour limit, on 4, 6, 8 and 10 machines and 
it was able to solve optimally one weekly instance (7 orders) on 10 and 8 machines in 10 
sec and 25 sec respectively, while the other two instances were solved with Gaps 8.62% 
after 262 sec for 6 machines and 5.14% after 1735 sec for 4 machines. The difficulty of 
(MILP) to deal with job splitting property lies on the fact that the time horizon (thus, the 
number of time intervals and the number of variables) increases exponentially as the 
quantity of the job increases.  
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Interestingly, the above results refer to the solution of Gurobi when using as upper bound 
the best among GH1 and GH2 solutions (normalizing processing times and setup times as 
multiples of lτ, otherwise we could only handle some daily instances. So, we proceed by 
applying GH1 and GH2 to solve our weekly instances. To better evaluate the performance 
of GH1 and GH2 we divide our dataset into five subsets of increasing number of jobs, each 
consisting of 5-6 weekly instances, and we test each subset for different number of available 
machines (4,6,8,10,12). 

 

Table 6. Results over all weekly instances on 4, 6, 8, 10 and 12 machines 

As we show in Table 6, GH1 outperforms GH2, achieving results of 4.2 times smaller gap, 
but being 3 times slower on average, over different numbers of available machines. Notably, 
GH1 achieves almost optimal solutions of Gap less than 7.1% (4.7% on average) for all 
instances, in less than a minute (35sec on average). Note that instances with a few orders 
on many machines seem to demonstrate larger Gaps, compared to smaller number of 
machines mainly due to the total setup time constraint and the limited number of groups of 
workers. Additionally, running times may seem inconsistent regarding the size of the 
instances, but this is justified due to the small number of instances of each subset. As a 
result, instances that are time-consuming within a subset have a huge impact on the average 
running time. 

4.4.1 Enhancements 
 
It is important to note that, due to the COVID-19 situation, 22.13% of orders were tardy. 
Even though the solutions in Section 4.1 achieve small gaps, they cause a significant 
increase on the number of tardy jobs which therefore rise to 27.4% of the total orders (an 
increase of 24% compared to the ones initially tardy). 

Moreover, observing that small jobs (unsplittable with qi < 100 meters) have tight deadlines, 
while larger ones have looser, it appeared reasonable to dedicate a set of machines to small 
jobs and the rest to the large ones. To this direction, we perform a comparison of GH1 and 
GH2 on small and large jobs separately, to decide which is the best choice in every case. 
We divide each weekly instance to small and large jobs and, as before, we divide our dataset 
into subsets of increasing number of (either small or large) jobs. Subsets with small jobs 
consist of 4-6 weekly instances each, while subsets of large jobs of 5-7; note that on the 
latter we have excluded two instances, since they included only 1 and 2 jobs, respectively. 
The size of small job instances ranges from 6 to 41, while for large from 5 to 34.  
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Table 7. Results on small (left) and large (right) job instances for 4, 6, 8, 10 machines 

We tested (MILP) on small jobs, using a simplified version (where in constraints (4.16)-(4.18) 

we substituted Qi,m•
𝑢𝑖

𝑠𝑚
 by Yi,m•pi,m, while Constraints (4.5)-(4.6) were removed) on 4, 6, 8 and 

10 machines, for 8 out of 27 weekly instances (from 6 to 18 orders). Notably the exact solver 
was able to solve optimally 20 instances in 98.03 sec on average, 10 instances were solved 
with mean Gap 7.36% and for 2 it was not able to obtain a solution under 1-hour limit. 
However, since the solutions obtained were of similar Gap with the ones of GH1, we do not 
present them in more detail. Table 7 presents the comparison between GH1 and GH2 on 
small and large job instances, respectively. GH1 achieves solutions of better quality, with 
26.6% and 4.8% Gap for small and large jobs respectively, however GH2 is much faster (4 
times on large and almost 6 times on small jobs). Interestingly, for small jobs the difference 
on their gap is significantly decreasing (from 410% on large jobs to 55%). Note that Gap 
values on small jobs instances are quite large, but this is due to the strict daily total setup 
time constraint. 

Since GH1 performs better on both small and large job instances, we run it once to schedule 
first all small jobs to an appropriate number of machines and re-run it consequently to 
schedule the large jobs on the remaining machines or (if possible) after the small jobs on 
their dedicated machines. More precisely, we run GH1 for each weekly instance, for 12 
candidate numbers of dedicated machines (|M|∈{1,2,…,12}) on small jobs. 

The aim of this approach is to examine the effect of dedicated machines on three 
optimisation criteria: makespan, number of tardy jobs and total tardiness. 

 

Figure 7. Best policies to balance makespan, number of tardy jobs and total tardiness, over weekly instances 
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We consider as baseline the makespan, number of tardy jobs and total tardiness over all 
weekly instances computed by GH1 in Section 4.4 and highlight the smallest average 
change on each criterion over the same instances, over all runs under different number of 
dedicated machines: For makespan, the smallest average increase is 1.55%, while for the 
same instances tardiness and the number of tardy jobs decrease by 16.68% and 10% 
respectively. For the number of tardy jobs, the largest average decrease is 16%, while for 
the same instances the makespan increases by 4.07%, and tardiness decreases by 19.1%. 
For total tardiness, the largest average decrease is 22.62%, while for the same instances 
makespan increases by 6.35% and number of tardy jobs decreases by 12.12%. 

Figure 7 presents a proposed policy for weekly instances, to achieve better tradeoffs 
between makespan increase and number of tardy jobs, tardiness decrease. We conclude 
that dedicating machines on small jobs positively affects 17 out of 27 instances (in Figure 
7), trading a small increase on makespan for large reductions on the number of tardy jobs 
and total tardiness. Notably all improvements occurred when the number of dedicated 
machines ranges from 2-7, while in 76\% of the instances the range is from 2-4. It is also 
encouraging that on 15 of those 17 instances there were various alternative policies that 
could be chosen demonstrating also positive effects.  

Let us conclude by saying that additional experimentation, on both real and random or 
modified literature instances, could yield more insights. Although already competitive within 
a quite challenging setting, our optimisation approach will be further strengthened by 
examining tighter formulations in a combination with a Benders-like decomposition, to 
accomplish provably near-optimal solutions on even larger instances. Moreover, the 
robustness of our approach against common disturbances (such as loom malfunctions) will 
be also tested in the next stage of the project.  
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5 Automotive Manufacturing: Pilot Case by CONTINENTAL 

5.1 Introduction 

Continental is a discrete part manufacturing environment for automotive parts. Key decision 
areas for the operation managers and production line supervisors are the following:  

a) generation of static schedules for a given set of production orders and available 
resources considering a planning horizon of multiple days and various operational 
constraints,   

b) reactive re-scheduling of the master plan as new input information arrives (e.g. new 
urgent orders) based on the current status of the production lines, and  

c) integrated scheduling of maintenance activities. 

The production line examined in the context of FACTLOG consists of two stages. The first 
stage is preassembly subline that consists of 4 process steps, followed by one buffer step. 
Afterwards, the second stage contains 13 assembly process steps. Each process step is 
performed by one or more machines that can be seen as a workstation. All jobs follow the 
same routing through each line (there is no flexibility), which means that schedules can be 
determined at the level of the lines and not at the level of each individual workstation. No 
internal buffers are considered between workstations, and there is no parallel processing. 
Change of type of parts processed in the lines is followed by a setup time of one or more 
workstations. The transportation times for the movement of parts from one workstation to 
the next is considered negligible. 

The above-described production setting can be modelled as a so-called flow shop 
scheduling problem (FSSP) with resource constraints (e.g. semi-finished products, raw 
materials etc). More specifically, all products follow a specific processing flow across 
multiple processing stages that may consist of one or multiple workstations. In a flow shop 
environment, there is a set of production orders (or jobs) that must be completed. Each order 
refers to a batch of products with similar characteristics and consists of several sequential 
operations that correspond to the processing of a job on every processing stage. The job 
size, resource consumptions, bill of materials and due dates are known. Each operation 
should be scheduled on specific workstation and no pre-emption / interruption is allowed. 
The processing times and the setup times (if needed) per operation on each workstation are 
known. The goal is to produce a schedule such that the completion time of the latest job is 
minimized (makespan) as well as the total job tardiness.  

Apart from resource and other operational constraints, another important dimension is the 
scheduling of maintenance activities. It is very important to generate maintenance plans that 
will not create long delays on production orders with very tight deadlines and overall to 
minimize the negative impact of downtimes on the overall production schedule. Therefore, 
it is essential to treat the production and maintenance scheduling as integrated problems. 
Assuming that maintenance windows at specific machines are provided either from a 
predictive or preventive maintenance module, the aim is to schedule all production orders 
as well as to decide when the best time is to perform the machine maintenance activities.  

A Constrained Programming (CP) approach is proposed for modelling and solving this 
integrated 2-stage Flow Shop Scheduling Problem with Resource Constraints and 
Maintenance Windows. The optimization model assumes an input the planning horizon, the 
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set of production orders to schedule, the available resources and the windows to perform 
maintenance activities. On return, it provides the optimal or near optimal production and 
maintenance schedules. On this basis, the core functionalities provided to the human 
planners are the following: 

• ability to generate static plans and perform what-if scenarios (for example, the 
planner can generate plans for different sets of production orders, different resource 
availability, different processing times etc), and the 

• ability to update the baseline master plan as dynamic events occur.  

The dynamic events can be new urgent orders and/or machine breakdowns. Whenever the 
planner applies a dynamic event together with the baseline plan, a new re-optimized plan 
will be generated. As described earlier in this report, the optimization engine is a Restful API 
that accepts requests and delivers responses using Hypertext Transfer Protocol (HTTP) and 
JSON text format for data exchange. Appendix 3 presents in detail the inputs and outputs 
in terms of classes and data structures. 

Below, Section 5.2 provides a brief overview of the literature on flow shop scheduling 
problems with resource constraints as well as on integrated shop scheduling problems with 
maintenance planning and scheduling. Section 5.3 describes in detail the optimization 
model. Finally, Section 5.4 provides some preliminary computational experiments on 
synthetic data sets.  

5.2 Literature Review 

There is a huge literature on shop scheduling problems and various exact and heuristic 
approaches have presented and tested on well-known benchmark data sets for a wide 
variety of problem variants with various mixes of constraints and (multi-)objective functions. 
We refer interested readers to the recent survey paper of Komaki et al. (2018) on Assembly 
Flow Shop Scheduling problems. Various papers also propose models and algorithms for 
problems with resource constraint; however, the literature in this domain is less organised.  

Overall, there are 5 families of resources, namely renewable resources, non-renewable 
resources, work-in-progress buffers, bill of materials and tooling resources. The most 
common case of renewable resources are utility resources (e.g. electricity) that are 
consumed from the machines during their operation. Often both soft and hard limits are 
imposed on the usage of utility resources. Non-renewable resources are typically used to 
describe material resources that are consumed and/or produced during job operations. 
Work-in-Progress buffers are intermediate capacity buffers and describe constraints that 
exist before/after machines. These buffers are used to hold jobs when they cannot be 
directly processed from the next machine. Finally, tooling constraints are used to describe 
limited capacity renewable resources that are occupied by tasks during their execution, and 
they are freed once the processing finishes. In practice, this kind of resources can be used 
to describe expert personnel that is required to operate specific machines or to execute 
specific tasks, or special equipment that is limited in the shop floor.  

Most shop scheduling problems studied in the literature assume unlimited capacities and 
work-in-progress buffers, and therefore, no waiting is imposed to the execution of any 
operation. By adjusting the size of buffers one can enforce the blocking of the execution of 
the operations, and hence, cause a dramatic increase to the makespan. Blocking constraints 
and limited capacity buffers for the Flow Shop Scheduling Problem (FSSP) appear in the 
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work of Trabelsi et al (2012). In this paper, a continuous production shop floor is assumed 
with multiple stages, while heuristic and metaheuristic algorithms are proposed for the so-
called FSSP with mixed blocking constraints. Mascis and Pacciarelli (2002) uses the Job 
Shop Scheduling Problem (JSSP) to study blocking constraints imposed by zero capacity 
intermediate buffers. In a more generic fashion, Brucker et al. (2006) tries to organize the 
possible buffer options and also provides essential definitions and disjunctive graph 
modifications for a more efficient representation of the JSSP variant. Yaurima et al. (2009) 
studies a hybrid FJSSP problem with unrelated machines, sequence dependent setup times 
and limited buffers inspired by a television assembly shop floor. Lastly, Belaid et al (2012) 
study a two machine Flexible JSSP with limited capacity temporary buffers between 
production stages, inspired by a shampoo industry and provide heuristic and metaheuristic 
approaches for solving the problem. To our knowledge literature regarding blocking 
constraints on Flexible JSSP with parallel machines are very limited. Aschauer et al (2017, 
2018) study Flexible JSSPs with no-wait constraints inspired by a hot rolling mill application, 
while Groflin et al (2011) develop a metaheuristic algorithm for a similar problem. 

In recent years, shop scheduling integrated with maintenance planning and scheduling has 
received a lot of attention. Many different types of maintenance have been considered, 
including among others PM (Preventive Maintenance) RTFM (Run to failure maintenance) 
CBM (Condition-based maintenance), Corrective Maintenance (CM), TBPM (Time-based 
Preventive Maintenance) and RCM (Reliability centered Maintenance). In cases of 
preventive maintenance various stochastic aspects has been modelled and many different 
policies has been tested. Assuming a deterministic setting, one approach that seems to be 
effective is to consider a priori maintenance windows for fixed duration maintenance 
activities. These windows and the related breakdown probabilities can be derived via 
supervised machine learning models based on historical data. In addition, simulation models 
can be used to evaluate the generated schedules.  

Table 8 provides a summary of the literature for integrated shop scheduling and 
maintenance planning. 

Reference Problem 
type 

Maintenance 
type 

Machine 
degradation 

Notes Objective Stochastic 
aspect 

Method 

Zandieh et 
al (2017) 

Flexible 
Job Shop 

Basic & 
Preventive 
Maintenance 

YES Thresholds for the 
machine 
degradation 
dictate the type of 
maintenance 
activity. 
Schedules are 
evaluated using 
simulation 

Makespan Sigmanormal 
functions for 
maintenance 
duration. 
Sigmoid 
distributions 
for the shock 
events 

Metaheuristic 

Perez-
Gonzales 
et al. 
(2020) 

Flow Shop Time-based 
Preventive 
Maintenance 

NO Resumable-non-
resumable 
maintenance 
activities. Periodic 
and deterministic 
maintenance 
activities 

Makespan, 
Lateness 

- Exact (MILP) 

Branda et 
al. (2020) 

Flow Shop Preventive & 
Corrective 
Maintenance 

NO - Makespan, 
Earliness-
Tardiness 

Randomized 
failure time of 
a machine 
that follows 
Weibull 
distribution 

Genetic 
Algorithm 

Dong et al. 
(2020) 

Job Shop Preventive 
Maintenance 

NO Fixed and Flexible 
maintenance 
activities. Single 
machine 

Makespan, 
Total Flow 
Time 

- Exact (MILP) 
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Reference Problem 
type 

Maintenance 
type 

Machine 
degradation 

Notes Objective Stochastic 
aspect 

Method 

Shijin and 
Jianbo 
(2010) 

Flexible 
Job-Shop 
Schedulin
g 

Preventive 
Maintenance 

NO Deterministic 
maintenance time 
windows. Two 
types of 
resources are 
incorporated to 
constraint the 
ability of 
maintaining more 
than one machine 
simultaneously. 

Makespan, 
Total 
workload, 
Critical 
machine 
workload 

- Filtered beam 
search 

Cui et al. 
(2017) 

Job Shop Time based 
Preventive 
Maintenance 

NO Resumable-non-
resumable 
maintenance 
activities 

Makespan - Branch and 
Bound + 
Heuristic 

Hadi and 
Mehrdad 
(2015) 

Flexible 
Job Shop 

Preventive 
Maintenance 

YES Discrete failure 
rates. 
Maintenance time 
is constant. 
Minimum 
availability 
constraint 

Number of 
tardy jobs 

- SA + Monte 
Carlo 
Simulator  

Azadeh et 
al (2015) 

Open 
Shop 

Preventive 
Maintenance 

NO - Multiple 
(Makespan, 
Total 
Tardiness, 
Earliness, 
Machine 
availability) 

Poisson 
distribution is 
used to 
calculate the 
time required 
for preventive 
maintenance. 

MOPSO + 
NSGA II 
metaheuristics 

Moradi et 
al (2010) 

 Preventive 
Maintenance 

NO Fixed 
maintenance 
activities on 
specific time 
periods. 
Everything else 
seems 
deterministic 

Makespan - Preventive 
maintenance 
and learnable 
genetic 
architecture 

Gholami et 
al (2009) 

Hybrid 
Flow shop 

Preventive 
Maintenance 

YES Machines suffer 
only breakdown 
events with 
stochastic 
intervals. 

Makespan Exp-rand 
function is 
used to 
calculate 
breakdown 
intervals and 
breakdown 
times. 

Random key 
genetic 
algorithm 

Naderi et 
al (2009) 

Job shop Preventive 
Maintenance 

NO Various 
maintenance 
policies 

Makespan - Genetic 
Algorithm and 
Simulated 
Annealing 

Ehram et 
al (2010) 

Flow Shop Preventive 
Maintenance 

YES Thresholds for 
machine 
degradation level. 
Metaheuristic is 
used for 
generating 
schedules that 
are evaluated 
using a simulator 

Makespan Shock events 
follow a 
poisson 
distribution, 
amount of 
degradation 
follows an 
exponential 
distribution, 
recovery time 
follows 
lognormal 
distribution 

Hybrid 
simulated 
annealing-
tabu search 

Yu and 
Hee (2021) 

Flow Shop Preventive 
Maintenance 

NO Proportional 
Processing times 

Total 
Completion 
Time, 
Maximum 
Lateness 

- Exact (MILP) 
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Reference Problem 
type 

Maintenance 
type 

Machine 
degradation 

Notes Objective Stochastic 
aspect 

Method 

Logendran 
and 
Talkington 
(1997) 

Job shop 
with 
parallel 
machines 

Preventive 
and Corrective 
Maintenance 

YES Two maintenance 
policies. 
Schedules are 
simulated 

 
Mean time for 
machine 
failures 
follows an 
erlang 
distribution. 
Repair times 
are also within 
a range of 
values 

- 

Ruiz-
Torres et 
al (2017) 

Job Shop Repair 
Maintenance 

YES* Deteriorating 
processing times 
after each job. 
Maintenance 
activities restore 
machine 
performance 

Makespan - Heuristics 

Shijin and 
Ming 
(2014) 

Two-stage 
hybrid flow 
shop 

Preventive 
Maintenance 

YES Start times of 
preventive 
maintenance 
activities are 
unknown as well 
as their number. 
Durations are 
fixed, availability 
uses a 
distribution. 

Bi-objective 
(Makespan 
+ Machine 
availability) 

- MOPSO + 
NSGA II 
metaheuristics 

Bajestani 
et al (2014) 

Flow Shop Preventive 
Maintenance 

YES Machine 
deterioration 
states are 
defined, and the 
transitions follow 
markov chain 
rules 

Maintenanc
e cost + lost 
production 
cost due to 
late orders 

Random-
based 
transitions 
between 
machine 
states 

MDP for the 
maintenance 
plan and MIP 
for the 
production 
scheduling 

Ben Ali et 
al (2011) 

Job-shop 
scheduling 

Preventive 
and Corrective 
Maintenance 

YES Maintenance is 
applied based on 
2 types of tasks 
(periodic and 
workflow based) 

Multiple 
(Makespan, 
Total 
maintenanc
e cost) 

- Genetic 
Algorithm 

Rajkumar 
et al (2010) 

Flexible 
Job Shop 

Preventive 
Maintenance 

NO Start and end 
times of 
maintenance 
activities as 
decision variables 

Weighted 
sum 
function of 
makespan, 
workload, 
total 
workload 

- GRASP 

Yahong et 
al (2014) 

Flexible 
Job Shop 

Preventive 
Maintenance 

NO Maintenance time 
windows 

Makespan - Heuristics 

Rahmati et 
al (2018) 

Flexible 
Job Shop 

Preventive 
and Corrective 
Maintenance 

YES Machine status is 
checked on 
specific intervals, 
maintenance 
actions can be 
preventive or 
corrective. 
Thresholds 
control the 
availability of the 
machine. 
Schedule is 
evaluated through 
simulation. 

Multi-
objective ( 
Makespan, 
maintenanc
e cost 
function, 
system 
reliability 
function) 

Shock events 
are 
stochastically 
applied and 
degrade the 
status of the 
machine. 
PM/CM 
activity 
durations are 
also 
stochastically 
calculated 

4 multi-
objective 
simulation 
based 
optimization 
algorithms 
(MOBBO, 
PESA, 
NSGAIII, and 
MOEAD) 

Table 8: Literature review for integrated shop scheduling and maintenance planning 
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5.3 Model and/or Solution method (Demonstration) 

5.3.1 Notation 
 
The examined 2-stage FSSP with resource constraints and maintenance activities is 
modelled as follows. Let a set of jobs 𝐽 = 1, … , 𝑙, set of available machines 𝑀 =  {1, … , 𝑚}, 
a set of tools 𝑇 = {1, … , 𝐿𝑇}, a set of utility resources 𝑈 = {1, … , 𝐿𝑈}, a set of arbitrary 

resources 𝑅 = {1, … , 𝐿𝑅} and a set of WIP Buffers 𝑊 = {1, … , 𝐿𝑊}. We define two dummy 
operations 𝑖𝑢

∘  and 𝑖𝑢
∗  for each job 𝑢 ∈ 𝐽, which correspond to the first and the last operations 

of the job, respectively. Each job 𝑢 consists of a set of operations 𝑂𝑢, including the dummy 

operations. There exists a set Ω that includes all the operations of the problem, Ω = ⋃ 𝑂𝑢
𝑙
𝑢=1 . 

Let 𝑛 = |Ω| denote the total number of operations. Each operation 𝑖 ∈ Ω can be executed 
on a set of available machines 𝑀𝑖 ⊆ 𝑀 and has a processing time 𝑝𝑖,𝑘, where 𝑘 ∈ 𝑀𝑖. Each 

operation is executed once by a single machine, the machines can execute only one 
operation at a time and no pre-emption is allowed. During the execution time that machines 
execute operations, they may consume more than one utility resource. The flexibility 𝑓𝑥 of 
the problem can be defined as a metric of the degrees of freedom regarding the assignment 

of operations to different machines, and it can be calculated as 
1

𝑛
∑ |𝑀𝑖|𝑛

𝑖=0 . 

Each operation 𝑖 ∈ Ω can be associated with two resources 𝑅𝑒𝑞(𝑖) and 𝑃𝑟𝑜𝑑(𝑖) that 
correspond to the resources required and produced by the operation respectively, while the 
tool associated to the operation is denoted by 𝑡(𝑖). Note that in cases where there are no 
required/produced resources or a needed tool for an operation 𝑖, the values of the 
corresponding association vectors are set to -1. To reduce the complexity of the problem 
we assume that the produced and/or required resource quantity per operation is fixed 

(𝑙𝑜𝑡𝑆𝑖𝑧𝑒). Each utility 𝑈𝑘 ∈ 𝑈 has a hard consumption limit denoted by 𝑈𝑘
̅̅̅̅ . For a machine 

𝑘 ∈ 𝑀$, $𝑢_𝑖(𝑘) is a binary variable that depicts whether or not machine 𝑘 requires utility 𝑈𝑖. 
For simplicity we assume that each machine exhibits a unitary consumption per utility during 
each operation. The size of the limited capacity buffer of machine 𝑘 ∈ 𝑀 is denoted by 

𝑙𝑐𝑏(𝑘). For each tool 𝑘 ∈ 𝑇 has a hard upper bound is defined, denoted by 𝑇𝑘
̅̅ ̅, that 

corresponds to the maximum number of instances of the tool that can be used in parallel. 

Starting inventory of a resource 𝑘 ∈ 𝑅 is denoted by 𝑅𝑘
𝑠𝑡𝑎𝑟𝑡. Finally, the associated work in 

progress buffer of a resource 𝑘 ∈ 𝑅 is denoted by 𝑤𝑖𝑝(𝑘). 

Definition A. A solution 𝑠 is defined as a pair (𝛼, 𝜋), where 𝛼 is a vector that represents the 

assignment information of operations to machines and 𝜋 is a table of vectors that represents 
the sequence of operations executed at each machine.  

More specifically, let 𝛼 = {𝛼(𝑖), ∀𝑖 ∈ Ω}, where 𝛼(𝑖) ∈ 𝑀𝑖, and 𝜋 = {𝜋𝑘, ∀𝑘 ∈ 𝑀}, where 𝜋𝑘 
denotes the permutation of operations processed by machine 𝑘. For the sake of completion, 

every permutation 𝜋𝑘 starts and ends with two dummy operations 𝑚𝑘
∘ , 𝑚𝑘

∗ ∈ that denote the 

start and the end operations of machine 𝑘, respectively. Note that 𝑀𝑚𝑘
∘ = 𝑀𝑚𝑘

∗ = {𝑘} and 

𝑝𝑚𝑘
∘ ,𝑘 = 𝑝𝑚𝑘

∗ ,𝑘 = 0, for all 𝑘 ∈ 𝑀. Note that given 𝜋, one can derive the assignment vector 𝛼, 

but for the sake of simplicity 𝛼 is also included in the definition of a solution. 

We use 𝑝𝑚𝑖 (and 𝑠𝑚𝑖) to denote the machine predecessor (and successor) of operation 𝑖 
assigned to machine 𝛼(𝑖) in a solution 𝑠(𝛼, 𝜋). In the same manner, we use 𝑝𝑗𝑖 (and 𝑠𝑗𝑖) to 
denote the single job predecessor (and successor) of operation 𝑖. 
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Definition B. The cost of a solution 𝑠, namely the makespan of the schedule 𝐶𝑚𝑎𝑥
𝑠 , is defined 

as the maximum completion time of all operations in Ω.      

Definition C. The head times 𝑟𝑖 denote the difference between the start time of the schedule 

and the start time of an operation 𝑖.  

Definition D. The tail times 𝑞𝑖 denote the difference between the completion time 𝐶𝑖 of the 
operation 𝑖 and the makespan 𝐶𝑚𝑎𝑥, i.e., 𝑞𝐶𝑚𝑎𝑥

− 𝐶 .  

The head and tail times can be determined as follows: 

𝑟𝑖 = max(𝑟𝑒 + 𝑝𝑒,𝛼(𝑒), 𝑟𝑝𝑚𝑖
+ 𝑝𝑝𝑚𝑖,𝛼(𝑖)) ∀𝑖 ∈ Ω, 𝑒 = 𝑝𝑗𝑖     (5.1) 

𝑞𝑖 = max(𝑞𝑒 + 𝑝𝑒,𝛼(𝑒), 𝑞𝑠𝑚𝑖
+ 𝑝𝑠𝑚𝑖,𝛼(𝑖)) ∀𝑖 ∈ Ω, 𝑒 = 𝑠𝑗𝑖     (5.2) 

Within the Flexible JSSP context critical components can be defined. The following 
definitions provide description for these concepts as well as the necessary notation. 

Definition E. An operation 𝑖 is critical when 𝐶𝑚𝑎𝑥 = 𝑟𝑖 + 𝑝𝑖,𝛼(𝑖) + 𝑞𝑖. 

In other words, critical operations have no flexibility to move back and forth in the scheduling 
horizon, and thus they define the length of the schedule, i.e., the makespan.  

Definition F. A sequence of consecutive operations 𝐵 = {𝑜1, 𝑜2, … , 𝑜𝑒−1, 𝑜𝑒} ⊆ 𝜋𝑘 processed 

on the same machine 𝑘 is considered as a critical block if all operations 𝑖 ∈ 𝐵 are critical 
and |𝐵| ≥ 2.  

In the following we provide the necessary definitions to help us solidify the concept of 
resource constraints as well as the different types of resources. 

Definition G. A sequence of consecutive operations 𝐵 = {𝑜1, 𝑜2, … , 𝑜𝑒−1, 𝑜𝑒} ⊆ 𝜋𝑘 processed 
on the same machine 𝑘 is considered as a critical block if all operations 𝑖 ∈ 𝐵 are critical 

and |𝐵| ≥ 2.  

5.3.2 Constraint Programming Formulation 
 
Constraint Programming has been successfully applied for solving various highly 
constrained and large-scale scheduling problems. We refer interested readers to the works 
of Goel et al (2015), Rasmussen et al (2017), and Unsal and Oguz (2013). The input of a 
CP model is a set of decision variables, a finite set of alternative values as a domain per 
decision variable and a set of constraints that must be satisfied. A CP solver works by 
enumerating feasible solutions of the problem using branching algorithms. During this 
process, it also tries to decrease the domain cardinality of each decision variable by 
propagating through the constraints. Constraint propagation identifies values or 
combinations of values across multiple decision variables that cannot be part of a feasible 
solution, and therefore, can be excluded from the domain sets of the corresponding decision 
variables, which can lead to branch pruning (Laborie et al., 2018). 

Specifically, for scheduling applications CP models use interval variables. This type of 
variable is a natural way of describing a task or activity. Interval variables have four 
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attributes: 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑 and 𝑆𝑖𝑧𝑒. 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡 indicates if the interval variable is 
included in the solution or not, 𝑆𝑡𝑎𝑟𝑡 and 𝐸𝑛𝑑 denote the start and the end time of the interval 
variable, i.e., the start and the end time of the task, while 𝑆𝑖𝑧𝑒 refers to the size of the interval, 
i.e., the length of the task.  

In the CP Optimizer the notion of sequence interval variables is also defined, which are sets 
of interval variables that represent an ordering of the included interval variables. Specific 
constraints are also introduced by the 𝐶𝑃 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 to handle sequence interval variables. 
In our implementation the following constraints regarding sequence interval variables are 
used: 

• 𝐵𝑒𝑓𝑜𝑟𝑒(𝑎, 𝑏, 𝑐), within a sequence variable 𝑎, interval variable 𝑏 should end before 
𝑐 starts. 

 
In the following we include all expressions and functions used to deduce the status of an 
interval variable in the working solution of CP. 

• 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑎), is a boolean expression that returns the presence status of an 
interval variable 𝑎 in the solution. 

• 𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑎), is an integer expression that returns the start time of an interval 
variable 𝑎 in the solution. 

• 𝐸𝑛𝑑𝑂𝑓(𝑎), is an integer expression that returns the end time of an interval variable 
𝑎 in the solution 

 
To further simplify the modelling of resources, we again adopt the notation used by the ILOG 
CP Optimizer. More specifically, the CP Optimizer uses the notion of cumulative function 
expressions to model discrete cumulative functions over time. The CP Optimizer introduces 
several constraints on interval variables as well as the cumulative function expression 
themselves, to describe the contribution of each variable but also any constraints regarding 
the values of the cumulative function itself over specific time intervals. In the CP model 
implemented in this work, the following constraints are used: 

• 𝑃𝑢𝑙𝑠𝑒(𝑎, ℎ), i.e., an interval variable 𝑎 contributes ℎ to the corresponding cumulative 

function during the execution time window of 𝑎 

• 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑎, ℎ), i.e., an interval variable 𝑎 issues a permanent contribution of ℎ to 
the corresponding cumulative function at the start of 𝑎 

• 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝑎, ℎ), i.e., an interval variable 𝑎 issues a permanent contribution of ℎ to 
the corresponding cumulative function at the end of 𝑎 

 
In our implementation, for each operation 𝑖 a decision interval variable 𝜏𝑖 is defined. The 
alternative execution options (modes) of an operation 𝑖 on a machine 𝑘 ∈ 𝑀𝑖 are also defined 
as decision interval variables 𝜙𝑖,𝑘. For these variables a constraint is defined such that the 

𝑆𝑖𝑧𝑒 attribute of each 𝜙𝑖,𝑘 is equal to the processing time 𝑝𝑖,𝑘 of 𝑖 on machine 𝑘. Tο accurately 

calculate the waiting times within the limited capacity buffers within the machines, for every 

available mode of an operation 𝑖 on a machine 𝑘 ∈ 𝑀𝑖, another decision interval variable 𝜙𝑖,𝑘
𝑏  

is defined. For the sake of completion, we define a set 𝜇𝑖 = {𝜙𝑖,𝑘, ∀𝑘 ∈ 𝑀𝑖} to represent all 

the available execution modes per operation 𝑖, which is also used to denote the domain set 
of variable 𝜏𝑖. Lastly, a sequence interval decision variable 𝜎𝑘 is defined per machine 𝑘 over 
the set of interval variables 𝜎𝑘 = {𝜙𝑖,𝑘, ∀𝑖 ∈ Ω}.  
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   min 𝐶𝑚𝑎𝑥            (5.3) 

subject to: 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝜏𝑖, 𝜇𝑖)∀𝑖 ∈          (5.4) 

𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑗, 𝑖)∀𝑖 ∈ Ω, ∀𝑗 ∈ 𝑃𝐽𝑖        (5.5) 

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝜎𝑘)∀𝑘 ∈ 𝑀          (5.6) 

∑ 𝑃𝑢𝑙𝑠𝑒 (𝜙𝑗,𝑘, 𝑢𝑖(𝑘))𝑛
𝑗=1 ∀𝑘 ∈ 𝑀𝑗 ≤ 𝑈𝑖̅∀𝑖 ∈ 𝑈       (5.7) 

∑ 𝑃𝑢𝑙𝑠𝑒 (𝜏𝑗 , 𝑡𝑖(𝑗))𝑛
𝑗=1 ≤ 𝑇𝑖̅∀𝑖 ∈ 𝑇, 𝑡𝑖(𝑗) = 𝑖        (5.8) 

∑ 𝑃𝑢𝑙𝑠𝑒(𝜙𝑗,𝑘
𝑏 , 1)𝑚

𝑘=1 ≤ 𝑙𝑐𝑏(𝑘)∀𝑗 ∈ 𝑀𝑗        (5.9) 

𝑃𝑟𝑒𝑐𝑒𝑛𝑠𝑒𝑂𝑓(𝜙𝑗,𝑘
𝑏 ) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝜙𝑗,𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗     (5.10) 

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝜙𝑗,𝑘
𝑏 ) = 𝐸𝑛𝑑𝑂𝑓(𝜙𝑗,𝑘)∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗       (5.11) 

𝐸𝑛𝑑𝑂𝑓(𝜙𝑗,𝑘
𝑏 ) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝜙𝑗,𝑘

𝑏 )𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑗𝑗
) ∀𝑗 ∈ Ω, ∀𝑘 ∈ 𝑀𝑗    (5.12) 

𝑆𝑡𝑒𝑝(0, 𝑅𝑖
𝑠𝑡𝑎𝑟𝑡)  +  ∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑃𝑟𝑜𝑑(𝑗)=𝑖  −

∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑅𝑒𝑞(𝑗)=𝑖 ≥ 0 ∀𝑖 ∈ 𝑅       

       (5.13) 

∑ {𝑆𝑡𝑒𝑝(0, 𝑅𝑖
𝑠𝑡𝑎𝑟𝑡) + ∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗 ∈Ω|𝑃𝑟𝑜𝑑(𝑗)=𝑖 −𝑖∈𝑅|𝑤𝑖𝑝(𝑖)=𝑘

∑ 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑗 , 𝑙𝑜𝑡𝑆𝑖𝑧𝑒)𝑗∈Ω|𝑅𝑒𝑞(𝑗)=𝑖 } ≤ 𝑊𝑘
̅̅ ̅̅ ∀𝑘 ∈ 𝑊       

      (5.14) 

𝐶𝑚𝑎𝑥 ≥ 𝐸𝑛𝑑𝑂𝑓(𝜏𝑖)∀𝑖 ∈          (5.15) 

The objective (5.3) refers to the minimization of the makespan. Constraints (5.4) are used 
to enforce a unique selection of the available modes for the interval variable 𝜏𝑖 out of the set 
𝜇𝑖. Constraints (5.5) are used to cover the precedence relations of the problem, i.e., each 

operation 𝑖 can start as soon its job predecessor 𝑝𝑗𝑖 has finished. Constraints (5.6) ensure 
that the interval variables included in 𝜎𝑘 do not overlap, since a machine can execute only 
one operation at a time. They also ensure that each operation starts after its machine 
predecessor has finished. Constraints (5.7) and (5.8) are used to accumulate the 
consumption of utility and tool resources respectively. They also make sure that the upper 
usage bounds are not surpassed. Constraints (5.9, 5.10, 5.11, 5.12) are used to describe 
the usage of limited capacity buffers. More specifically, constraints 5.9 accumulate the 
usage of the limited capacity buffer and also impose the buffer capacity, while constraints 
5.10, 5.11 and 5.12 are used to calculate the start and end times of the decision interval 
variables related to the limited capacity buffers. Constraints (5.13) are used to accumulate 
the production and consumption of each generalized resource, while constraints (5.14) 
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accumulate the usage of resources on their corresponding work in progress buffer. Lastly, 
constraint (5.15) is responsible for the calculation of the makespan.  

In the above model, maintenance activities are added as additional dummy jobs / production 
orders with predefined release and due dates (to represent the maintenance window). These 
dummy jobs have zero processing time on all machines / workstations, except the one that 
maintenance will be performed.   

5.4 Computational Experience 

First, we assess the impact of resources constraints. we are using as a test bed for our 
experiments benchmark data sets for the generic Flexible Job Shop Scheduling Problem 
that is a generalization of the 2-stage FSSP. For this purpose, a subset of instances of the 
Fattahi dataset was chosen (MFJS1 – MFJS10). A hierarchical optimization objective was 
selected with the makespan as the primary objective and the maximum flow time as the 
secondary objective. A single utility resource is considered, that can limit the simultaneous 
operation of machines of the shop floor. The experiment is conducted in two steps. At first, 
an unlimited availability of the resource is considered. In this case, all machines can operate 
simultaneously without any restrictions or blockers. The CP model solved all problems 
optimally and the results for both objectives are presented in Column (RC0) of Table 9. In 
the second step of the experiment, a restriction on the maximum allowed consumption of 
the resource is applied. The maximal resource limit is defined as a linear function of the 
number of available machines, so that the resources availability scales uniformly across all 
problem instances of the dataset. In this case, the CP model also managed to optimally 
solve all problem instances. The results are presented in Column (RC1) of Table 9. 

Instances RC
0
 RC

1
 

Impact 
(RC

1
-RC

0
)/RC

0
 

# N M Ops. C
max

 F
t
 C

max
 F

t
 C

max
 F

t
 

MFJS1 5 6 15 468 2054 805 3500 72% 70% 

MFJS2 5 7 15 459 2072 803 2899 75% 40% 

MFJS3 6 7 18 466 2501 996 5018 114% 101% 

MFJS4 7 7 21 554 3352 1253 7126 126% 113% 

MFJS5 7 7 21 514 3155 1191 6930 132% 120% 

MFJS6 8 7 24 634 4212 1498 9636 136% 129% 

MFJS7 8 7 24 879 5912 2051 13142 133% 122% 

MFJS8 9 8 36 884 6753 2311 18015 161% 167% 

MFJS9 11 8 44 1055 9316 2953 29368 180% 215% 

MFJS10 12 8 48 1196 11575 3425 33295 186% 188% 
Table 9: Fattahi Dataset with Resource Constraints (1 Resource + Hierarchical objectives Cmax | Ft) 

The last Column of Table 9 provides the % increase of both objectives when considering 
limitations of resource constraints. The results show that in problems with the same number 
of machines, both objectives increase as the number of operations increases. The same 
effect is observed when the problem size increases (number of jobs as well as the number 
of operations). Overall, we notice that even a slight limitation of the maximal resource 
consumption limit (almost 20% across all problem instances), can cause significant increase 
to the makespan as well as the maximum flow time that can range from 70% to 190%. This 
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highlights the importance of applying exact optimization algorithms for production 
scheduling at assembly flow shops with resource constraints. 

In addition to above sets of experiments, we also tested the scalability and efficiency of the 
proposed CP model on very hard-to-solve Flexible Job Shop Scheduling problems. For this 
purpose, we used various data sets from the literature. Table 10 summarizes the results 
obtained on small- and large-scale problem instances. Clearly, the CP models (using IBM 
ILOG CP Optimizer) performs exceptionally well on most common instances of the FJSSP. 
It managed to match 180 optimal solutions out of a total of 252 problem instances. 
Additionally, it manages to update 49 lower bounds out a subset of 178 instances, while also 
recording a total of 14 new best solutions. A recorded average gap of 1.54% shows that the 
CP model is able to calculate near optimal solutions within the time limit (3 hours in this 
case). 

 Benchmark 
Set 

Number of 
problem 

instances 

Number of 
operations 

Number of 
machines / 

workstations 

 Avg. Cmax Gap (%) 

BRData 10 60-300 2-8 284.6 5.87 

HURData 15 15-75 5-15 1428.3 0.96 

HUVData 15 15-75 5-15 1366.0 0.07 

HUEData 15 15-75 5-15 1697.4 0.47 

CBData 21 100-225 11-18 995.2 0.00 

DPData 4 12-56 5-10 2212.1 1.87 

Average Gap 1.54 

# Optimal Solutions 180 

# New Best Solutions 14 
Table 10: Results on small and large sacle Flexible Job Shop Scheduling Problems 
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6 Steel Manufacturing: Pilot Case by BRC 

6.1 Introduction 
 
Scheduling is among the most important issues that concern the operation of manufacturing 
systems. Its aim is the efficient allocation of tasks to machines along with the subsequent 
time-phasing of this allocation. In general, tasks individually compete for resources which 
can be of a very different nature, e.g., manpower, money, processors (machines), energy, 
tools. The same is true for task characteristics, e.g., set up times, due dates, relative urgency 
weights, and functions describing task processing in relation to allotted resources. 
Moreover, a structure of a set of tasks, reflecting relations among them, can be defined in 
different ways. In addition, different criteria which measure the quality of the performance of 
a set of tasks can be considered (Blazewicz et al., 2014). 

In this part we discuss flow shop scheduling problems, and more precisely we analyse the 
case of BRC Ltd, which is among the leading UK companies in steel reinforcement. Steel 
industry is an important industrial sector in UK and one of the biggest worldwide.  

In what follows we briefly introduce the case of BRC, we describe its products, the 
manufacturing line and its major components, the warehouse procedure etc. Then we 
outline the relevant operational research literature. 

Our aim is to develop a conceptual model for a part of the production after the "storage" and 
prior to "loading and dispatch" to the customers. We will construct a multistage flexible flow 
shop model and we will propose a suitable mixed integer programming model. Finally, we 
will present some preliminary results from the application of the MIP model on a set of 
randomly generated instances.   

6.1.1 Scheduling 
 
Today, resource management is an inevitable part of the performance and efficiency 
optimization in manufacturing and service industries. Scheduling is the allocation of shared 
resources over time to competing activities. It has been the subject of significant amount of 
research in the operations research field. Emphasis is given on investigating machine 
scheduling problems where jobs represent activities and machines represent resources; 
each machine can process at most one job at a time. The resources include the use of 
equipment, the utilization of raw material or intermediates, the employments of operators, 
etc. The purpose of scheduling is to optimally allocate the limited resources to processing 
tasks over time and the decisions to be determined include the optimal sequence of tasks 
taking place in each machine, the amount of material being processed at each time in each 
machine and sometimes the processing time of each job in each machine. 

In addition, scheduling problems could be classified into offline and online. In an offline 
problem, the number of jobs, release dates, delivery dates, processing times, due dates and 
other input data are known in advance. When data are not known in advance, but they are 
realised only when a job is released then the problem is classified under the label of online 
scheduling. Such problems have been extensively used for resource planning in distributed 
systems (Hsu et al., 2010; Steiger et al., 2003.)  
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The two most common types of scheduling problems, which are native to manufacturing 
jobs, are Job-Shop Scheduling Problem (JSSP) and Flow-Shop Scheduling Problem 
(FSSP). An important classification is based on the nature of the production facility to 
manufacture the required number of products utilizing a limited set of units. If production 
orders follow different production routes (require different sequences of tasks) and some 
orders may even visit a given unit several times it is known as a multipurpose plant and the 
related optimization problems are also called job-shop problems. If every job consists of the 
same set of tasks that are performed in the same order and the units are accordingly 
arranged in production line, it is classified as a multiproduct plant called flow-shop problem 
(Li and Ierapetritou, 2007). The latter class of problems is the ones that are mostly met in 
practise. 

The main distinction between flow-shop and job-shop is that, in the former case each job 
passes the machines in the same order whereas in the latter case the machine order may 
vary per job. So, the arrival of a job at a particular machine is not stochastic and most of the 
jobs that flow through that machine are similar in nature. Since workflow in a job shop in not 
unidirectional, scheduling becomes quite harder and tedious. Jobs in a FSP are produced 
either continuously or in batches (Mahale, 2017). We consider the batch process in the sense 
that once processing of a batch is started, it cannot be interrupted, and other jobs cannot be 
introduced into the batch. 

6.1.2 Case Description for BRC Ltd 
 
BRC ltd is the UK’s largest supplier of steel reinforcement and associated products for 
concrete. They fabricate cut \& bent rebar to the specs of BS8666:2005 and governed by 
the independent steel reinforcement governing body C.A.R.E.S. In 2009 BRC was acquired 
by the Celsa Steel Services UK group and currently has 4 depots in the UK with the largest 
being in Newport South Wales which can produce up to 2000 tonnes of fabricated 
reinforcement for the construction industry per week. The rest are in Romsey near 
Southampton, Mansfield in the midlands and Newhouse up in Scotland. BRC manufactures 
bespoke products for the construction industry with a lead-time of 5-7 days where each 
batch is unique and can be up to 2 tonnes of steel in one product batch. These can be in 
the form of simple straight bar, “U” shaped bars to complicated 99 shape codes where it 
could be 3D shapes. The process is to cut and shape from stock lengths of straight or coiled 
rebar and go through the flow process which will be explained with more details below.  

Production transforms the stock into products which are placed by cranes in the finished 
product lay-down area. The orders (batches) are fulfilled by placing the various finished 
products, which these orders are composed of, onto the trailers. At this phase there is a 
scanning procedure where each product gets a time stamp. When the order is complete the 
batch is ready for shipment to customer. All the material movements inside the production 
line are made by cranes which are a limited shared resource. BRC reported that considering 
an additional crane is not an option due to space limitations. 

We can segment the BRC factory into distinctive parts where different processes take place. 
Looking at figure (Figure 8) that displays the factory layout we see that it is segmented 
vertically into the left and right part responsible to produce coils and bars respectively. 
Additionally, distinct places are: 

• A: Stock Coil (left) and Stock Bars (right) is stored in different places relevant to 
diameter. 
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• B: For the 3 bays different cranes transfer the raw material from A to any other of 
the three B's in order to always have stock to feed in the machines. When a crane 
operator observes that in any B there is a shortage of raw material, either coils or 
bars, he/she proceeds to move to A, pick up respective raw material and deposit 
to respective B. 

• C: For the 3 bays this place denotes the position where the trailers that will carry 
the final products to the end customer(s) are located in order to be filled with 
completed products towards forming completed orders. 

• D: Once a C is considered as full it proceeds to location D to be ready to leave the 
factory towards delivery to the end customer. 

 

 

Figure 8. BRC Facility Layout 

After receiving the raw materials, the company stocks them into its warehouse in bars or in 
coils. When an order is received, stock availability is considered. The coil material goes 
through bending in different shapes (it depends on the product code) or straightening and 
then is cut to length. The final products are temporarily placed to the finished product area 
and finally are loaded and transferred to the customers. 

On the other hand, bars potentially need to go through a two-stage production process. A 
bar can be cut to length on shearlines or be dispatched as mill lengths regarding the order. 
The next job after cutting in size is either to dispatch the bar for shipping or threading and 
coupling. After finishing the latter procedure, the bars can be shipped or proceed to the final 
stage that is of bending. Finally, the products are temporarily placed to the finished product 
area and finally are loaded and transferred to the customers. 

In the above figure there are three different types of trailers like Red, Yellow and Green, in 
a sense they correspond to the production cycle of BRC. The stock is piled in the Red 
trailers. Production transforms the stock into products which are placed by cranes in the 
“finished product area” (green block in the layout diagram). In the yellow trailers, the various 
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orders (batches) are fulfilled by placing the various finished products that these products are 
composed of. Scanning takes place at this phase. This means the product is given a time 
that was scanned in the yellow trailers. When the order is complete then the trailer becomes 
green, which means that the order can be shipped. 

Although the company has a substantial processing capacity there is lack of system to 
organise the production plan. In the current processing system, the operator of each crane 
has a list of products that need to be moved but not an "optimised" order to do that. The 
principle in general suggests placing at the bottom pf the lay down area the straight bars, 
bent items are going next and small links at the very top. Since there is no picking system, 
the positioning and tracking of products/orders is rather problematic. While crane operators 
are looking for some products, they move other finished products around. As a result, a 
product might be under a lot of items when the operator is trying to locate it and that causes 
major delays. 

The machines' idle is mainly caused by the delays of cranes and the lack of feasible 
schedules. The processing of a product might have finished in some station but there might 
be a further delay due to the shortage of cranes. Thus, the machine remains idle at this 
point. Another issue is the lack of data about the time that a crane needs to move a product 
inside the production. BRC will install some sensors to give time stamps when the crane 
collects an item.  

We focus on bay 3, and more precisely on the flow shop scheduling problems for both coil 
and bar area. Given the orders in a specific time horizon, our goal is to find the optimal 
schedule with respect to specific Key Performance Indicators (KPIs).  In our case we will try 
to minimize the makespan Cmax and the number of tardy jobs Ti. Those KPIs are encoded 
as follows: 

• Makespan (Cmax): one of the most common objective criterion. Makespan is the 
maximal (or latest) completion time of any job. The makespan is defined as max 
(C1,...,Cn) where Ci is the completion time on the last machine for job i. With this goal 
the optimization method tries to finish each job as soon as possible. A minimum 
makespan usually implies a good utilization of the machine(s). 

• Number of tardy jobs (Ti): The number of tardy jobs is a measure that is quite often 
whether the company has very tight due dates in compare with the release times. 
The difference between the tardiness and the lateness lies in the fact that the 
tardiness never is negative. If the company allow tardy jobs after paying "something 
like a penalty e.g., complaints by the customers or a clause" then the model is more 
flexible but also more complex from computing time perspective since there are more 
possible combinations. 

 

6.2 Literature Review 
 
Over the last fifty years a considerable amount of research effort has been focused on 
deterministic and stochastic scheduling. In our case we will focus on deterministic Flow Shop 
problems. The number and variety of models considered is astounding. The FSP is one of 
the most complex scheduling problems and finding an optimal solution for real size instances 
in a reasonable amount of time is difficult both in practical and theoretical terms.  
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The main reasons that increase the computational complexity are the tardiness tolerance 
and the scale of the problem. Sometimes the company has some tight orders' due date so 
it's inevitable to avoid the job tardiness. In the above case our objective is to minimize as 
much as possible the number of tardy jobs or the convex combination with the makespan 
criterion. Flow shop problems have been studied extensively under exact and/or 
approximation methods using heuristics and metaheuristics with a variety of optimization 
criteria (Badri, 2019; Emmons and Vairaktarakis, 2012; Hsu et al., 2010; Li and Ierapetritou, 
2007; Mahale, 2017; Ovacik and Uzsoy, 2012; Ramya and Chandrasekaran, 2013.) 

An MIP model which has many aspects of our case (Unal et al., 2020) and mainly lag times 
between jobs. Due the shortage of data, about transportation lag times via cranes, we 
omitted this parameter however we can be compatible with this requirement on another 
phase. Another approach which is quite smart with a good performance is a decomposition 
method using mixed-integer and constraint programming (Harjunkoski and Grossmann, 
2002). Constraint programming (CP) tend to perform very well in flow shop scheduling 
problems as it gives good feasible solutions in a short amount of time. Scheduling problems 
can naturally be decomposed into assignment and sequencing subproblems. So, the 
authors' strategy relies on either combining mixed-integer programming (MILP) to model the 
assignment part and constraint programming (CP) for modelling the sequencing part. 
To the best of our knowledge the most relevant previous work appears in (Benda et al., 
2019). The authors proposed an elegant methodology for solving large flow shop scheduling 
instances. The authors proposed a tree-based priority rule in terms of a well-performing 
decision tree (DT) for dispatching jobs. The proposed DT relies on high quality solutions, 
obtained using a constraint programming (CP) formulation. Novel aspects include a unified 
representation of job sequencing and machine assignment decisions, as well as the 
generation of random forests (RF) to face overfitting behaviour. 

6.3 Model and/or Solution method (Demonstration) 
 
The problem that we encounter is a Flexible multistage flowshop problem with machine 
dependent setup times. However, we have imposed different additional aspects in our model 
to imitate the real situation as accurate as possible. This means that there are some 
restrictions regarding the different products. For example, we do not allow a 'coil' product to 
be in a stage where bars are being processed. Another factor prohibits any job to go from 
one machine to another if these are part of the set of 'non-existing' paths. This feature 
reflects the fact that we cannot schedule a job to be processed between an automated and 
a manual machine. 

6.3.1 Notation 
 
At this section we present the basic notation that will be used in our optimization model. We 
note that each order has several different jobs that is required, namely every job in our case 
could be a specific product (i.e., a product with a Shape Code which may denote a bar with 
diameter Φ = 12 mm and 4 m length etc.). The factory receives the orders from the 
customers given a unique order ID to track the jobs that compose an order. 
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6.3.2 Assumptions 
 
After consultation with BRC people in charge we will create a deterministic model which 
captures the essential structure of Bay 3. With regards to maintenance, there are some 
historic data in paper format. Currently there is no periodic planning, and the maintenance 
is based on empirical rules. However, BRC will apply in the future a periodic maintenance 
plan based on the specifications of each different machine. So, at this phase we consider 
the maintenance as input, and we incorporate this aspect by a parameter providing whether 
the machine is available or not. The assumptions made for the development of the present 
MIP are as follows: 

• All jobs are available at the start of time horizon. 

• All jobs follow the same predefined order of stages. 

• No preemption/ interruption is allowed. 
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• No job can be processed by more than one machine at the same time and no 
machine. can process more than one task at the same time (i.e., job slitting is not 
allowed). 

• There should be no waiting time between consecutive job. 

• Processing time is independent of the schedule. 

• The machines are parallel unrelated which implies that the machines are not uniform 
and might have different processing and setup times for the same product. 

• If a product is flagged as finished, then it cannot be processed again. So, 
reproduction is not allowed. 

 

6.3.3 Mathematical Formulation 
 
In this section we present our MILP for bay 3. We note that at every stage the factory can 
process only a specific set of jobs. There are three stages 𝑠 ∈ {1,2,3} and three different 

kind of jobs i  ∈ {𝑐𝑜𝑖𝑙, 𝑐𝑢𝑡𝑡𝑖𝑛𝑔, 𝑏𝑒𝑛𝑑𝑖𝑛𝑔}. We know in advance that the job 'coil' is processed 
in stage s=1, the job 'cutting' is processed in stage s=2 and finally the job 'bending' at stage 

s=3. To be consistent with the factory's production line we constructed the set 𝐵̂ whose 
members are all the feasible combinations of jobs and machines.  

 



D5.1 Real-time re-optimization algorithms V1.0 

 

 

63 

After discussions with BRC we established as criterion a convex sum of makespan and the 
number of tardy jobs, see (6.1).  

We define Ymi = 1 if job i is assigned on machine m. The set of constraints (6.2) ensure that 
every job is assigned to a machine at each stage, respecting the relationship connecting 
jobs to stages, as mentioned before the mathematical model. Constraints (6.3) link the 
makespan decision variable with the completion time of the last job to finish its processing. 
The next four sets of constraints (6.4) - (6.7) are related with the completion time of a job. 
More precisely constraint (6.4) refers that the completion time of a job i in a stage s should 
be at least the summation of release date, the processing time that the job needs to be done 
and the machines' setup time. The next constraint (6.5) guarantees the precedence 
sequence where each job cannot start its processing at stage s before it finishes at stage s-
1. This set of constraints be active only for those jobs which need cutting and bending 
operations. 

The next two set of constraints (6.6) - (6.7) prevent any two jobs from overlapping in a 
common machine. The difference of completion times between job i, which precedes job 𝑖́ 
should be at least the setup time plus the processing time of the first. From these two sets 
of constraints only one set will be active and the other will be redundant. At this point a small 
example could be helpful for the reader. First, we remind that the 𝑥𝑖𝑖′𝑠 = 1 if job 𝑖 precedes 
job 𝑖′. We can observe that we do not need the machine index m in the  𝑥𝑖𝑖′𝑠 decision 
variables because the nature of the constraints and the relationship that exist between 𝑦𝑚𝑖  
and  𝑥𝑖𝑖′𝑠 , hence these restrictions make sense only when we have jobs in a common 

machine. Let's assume that job job 𝑖 precedes job 𝑖′on machine m at stage s so 𝑦𝑚𝑖 =
1,  𝑥𝑖𝑖′𝑠  = 1. If we substitute these values in the above constraints, we will take: 

 

 

We can check that the first constraint implies that the starting time of job 𝑖′(𝑐𝑖′𝑠 −  𝑇
𝑚𝑖′
𝑝

−  𝑇𝑚
𝑠 ) 

is at least the completion time of job 𝑖. However, the second constraint is redundant. So, the 

initial assumption which job 𝑖 precedes job 𝑖′ is hold. 

Forbidden assignments are specified in (6.8), where 𝐵̂ is a set of forbidden (job, machine) 
combinations. Using this constraint, we ensure that every job is going to be processed in 
the correct stage. Similarly, constraint (6.9) prohibits any job i to go from machine 𝑚 𝑡𝑜 𝑚′ if 
these are part of the set of non-existing processing paths 𝑀̂. 

Furthermore, constraint sets (6.10) - (6.11) referred to the tardiness of a job. In more detail, 
constraints (6.10) calculate the lateness of a job and specified only the positive lateness as 

tardiness (𝐿𝑖 = max {𝑐𝑖𝑠 −  𝑇𝑖
𝑑 , 0 }. Constraint (6.11) links the tardiness with the decision 

variables counting the number of tardy jobs, namely, if lateness is greater than zero (𝐿𝑖 >
0), then the job is tardy Ti = 1. Finally, the next constraint will reduce the search space by 
adding some logical cutting plane. Constraint (6.12) reduces the search domain by making 
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sure that the total processing time of the jobs on a machine will fit between 1) the maximum 
due date subtracted with the shortest processing and setup times of all later stages, and 2) 
the minimum release date plus the shortest processing times of all earlier stages. Finally, 
constraints (6.13) ensure the integrallity constraints and the non-negativity as well. 

6.4 Computational Experience 
 
We now present a limited set of computational results from the application of our MIP on 
some randomly generated instances. Note that most computational studies in the literature 
are dominated by heuristic methodologies.  

We performed all tests on a machine with Intel(R) Xeon(R) E5-2650 v2 2.6 GHz, 16 GB 
RAM, Windows 2007, using CPLEX solver. We want to emphasize on the statistics as the 
scale of the instances raise. A batch of test instances consist of 10 problems randomly 
generated. We fixed the number of machines as the production line of Bay 3 work with, and 
we investigate how the mathematical formulation reacts while we increase the number of 
jobs in relationship the objective goal. The percentage near the solution time is the 
proportion on how many problems were solved within the time limit condition which is 30 
minutes in our case.     

 

Table 11. Instances’ solution times according to objective criterion 

We can see every time we add two extra jobs the complexity is increased, and the solution 
time tends to grow and the percentage of solved problems within the time limits seems to 
deescalate. In addition, we observe that the combination of makespan-tardy jobs is the most 
computational expensive case having big solution times and small percentage of solvability.  
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7 Real-time Analytics 

As already described in the deliverable D1.3, we define cognition as a complex process 
aiming to provide a proper understanding of the underlying industry process which starts 
with the detection of the variations in the process. 

According to the process management theory, there are two types of process variations:  

• Common cause variation – All processes have common cause variation. This 
variation is a normal part of any process. It demonstrates the true capability of a 
process. 

• Special cause variation – This variation is not normal to the process. It is the result of 
exceptions in the process environment. 

In the deliverable D3.1 we focused on the second type of variations, which are usually 
leading to the various types of anomalies. 

In this deliverable, we focus on the first type of the variations, which can be considered as 
“normal” since they are based on the nature of the process. In the industry processes, one 
form of the special cause variations is related to the so-called phases in the processes. 
These are different operational modes (stages) which are based on the machine design.  

For example, if a machine operates in three phases, it should be possible to detect the 
variations from the normal/usual/expected value, in the energy consumption in one of the 
phases (and not in general). This can be an early indicator of an anomalous behaviour of 
that phase and would require (re) optimisation, 

These variations define the structure of a process and as such are important for the 
optimization of the process execution, as defined in our Cognitive Factory Model (reported 
in deliverable D3.1). Figure 9 depicts the difference between the general cognition model 
and the new one.  

Briefly, in the new model the variations are better understood due to well defined context 
since the process structure is known (derived from data).  

From the data analytics point of view, it is important to treat/process the phases separately 
to be able to properly understand the data and learn precise models. Otherwise, the learning 
process will produce models which are covering more than one process mode, without being 
able to generalize the knowledge about the process properly. Consequently, the services 
based on these models (e.g., anomaly detection) will not working precisely (e.g., generating 
too many false positive alarms). 

From the cognition point of view, detecting this type of variations is of a high importance for 
the situation understanding, i.e., to decide if the reaction on the variations is requested. For 
example, by knowing that the machine is in the moving-head phase, there is an expectation 
that the usage of resources (e.g., energy) will be decreased, as well as the emission values 
should be reduced. 
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Figure 9. Updated cognition model 

However, by considering that there can be various subphases in a process, an efficient 
detection of these variations is a difficult task. Indeed, there are two main approaches for 
the detection of phases: 

• Model-driven, by knowing the physics of the process and selecting some of the 

process parameters for making the decision about the operating phase. For 

example, the parameter “depth” is important for drilling processes, for deciding if 

the process is in drilling/active or a passive phase. 

• Data-driven, where the phases should be learned from the past data using some 

ML approaches. 

The main constraint in the first method is that it requires a deep domain knowledge, whereas 
in some processes it can be missing. 

The main advantage of the second method is that it can be applied to any process where 
the past data is available. The biggest challenge is to decide which data should be used in 
the data-driven process phases detection process. Usually, this should be the process data, 
as mentioned parameter “depth” in the drilling process.  

In this deliverable we provide a novel approach for detecting process variations using energy 
consumption sensor. This sensor is a very common in the industry processes, since the 
energy consumption should be properly monitored in the context of various regulations, esp. 
from the environmental protection point of view. Moreover, it is planned to install additional 
energy sensors in at least two pilots (BRC, PIAZENCA), so that the relevance for this service 
is clear.  

Since the data from the pilots is not available yet, we have used the energy consumption 
data available from other industry pilots. Since the format of the data obtained from different 
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energy sensors should be similar, we argue that the generalization of the proposed solution 
and its application on selected pilots is feasible. 

The selected industry pilot is related to plasma cutting process, whereas the energy 
consumption sensor is attached to one of those machines. In the following text we present 
the results from that pilot. 

7.1 Data-driven process (phase) variation detection 

This section explores relevant details of designing, implementation and testing of plasma 
cutter detection system based on power sensors. The system is intended for detecting 
cutting phases of plasma cutter.   

A solution for this system already exists, but is mostly based on processing video streams, 
from usual and special industry cameras. These cameras enable the clear visualization of 
the processes as if they were cold.  

It is thought that system can be overburdened with a real-time video processing. 
Furthermore, expanses for using and maintaining such hardware are thought to be 
excessive for customers. The main goal of detection system is excluding camera sources 
completely or using them as an optional type of source if the system satisfies desired 
performances.   

7.1.1 Requirements  
  

To detect plasma cutter phases without the use of camera video sources, we can only rely 
on a power sensors data. The power sensor measures following parameters in three points 
(A, B. C):  

-THDI- current harmonic distortion  

-THDU- voltage harmonic distortion  

Requirements include video sources from common cameras needed for labelling phases as 
cutting or not, as well as actual power sensors data pre-processed for neural network input.  

7.1.2 Possible approaches  
 
There are two main approaches for the phase detection: 

• detection of cutting phase and 

• classification every phase as cutting or not cutting.  

Classification seems to be a good choice if we assume that we can detect the 
following phases:  

• when machine does not work at all,  

• when it works but does not move,  

• when it moves but does not cut  
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and the last one is a phase we are looking for - when it cuts, according to the data we get 
from sensors. 

Another open issue is whether we will need feature extraction. If we think about the nature 
of data (current, voltage), it seems like we could extract enough information from raw data 
for finding threshold values. Another approach is feature extraction for detecting patterns of 
every phase.   

Regarding data preprocessing, an open issue is the segment to be detected. The question 
is if it is possible to detect cutting only from one row or we need to segment data. A row is a 
particular measurement from power sensor which is performed each 2-3 seconds and it is 
open if a particular phase can be detected according to a row or a window of continual rows 
(measurements) is needed, labeled as observed phase. According to the nature of data, it 
seems to be possible to detect cutting for every measurement (measurements are data from 
power/energy sensor). 
  

7.1.3 Data preprocessing  
  

This chapter focuses on approaches and constraints for dataset preprocessing.  
  

7.1.3.1 First approach  
  

Data from power sensors are labelled with corresponding phases using CPD (Change Point 
Detection) with a Binary segmentation algorithm in a background. In this context, change 
point is a particular point where the phase has been changed. In those points values for 
'Active Power Total' parameter are abruptly increased or decreased. Though, we labelled 
all data between two change points as an appropriate phase and we got about 3000 
measures per each phase. The illustration below shows the process of labelling using this 
method. 

 

Figure 10. Labelling using CPD 

There is one constraint which was discovered after labelling with CPD, and its limited usage 
of CPD for this use case.  Plasma machine can use different power levels while performing 
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cutting on different materials. That means that some phases which are considered to be 
clearly cutting for one power level, would be active state period without cutting for higher 
power levels.  

This phenomenon was the reason for changing the approach for data preprocessing. Better 
approach demands relying on a relation between the parameters, instead of the values, and 
that required some feature extraction from data we have.  
  

7.1.3.2 Second approach  
  

After observing the behaviour of parameters for different power levels and different phases, 
it was clear that correlations of some parameters stay the same in all observed cases, 
though it was used for data pre-processing. Correlation between all pairs of points where 
THDI is measured (a with b, b with c, and a with c) are extracted as new features.  The 
illustration below shows the behaviour of parameters in different phases of cutting process.  

The correlation is extracted on a window of 5 continual measurements, and after that rule-
based logic is used for determining the class of the phase for each measurement. When this 
step is done, voting performed on set of window determines appropriate class for that 
window. Now, dataset is totally based on parameter relations, instead of values. Flow-chart 
below shows the steps for better understanding and the following illustration shows the rule-
based logic for labelling. 

 

 

Figure 11. Behavior of parameters in different phases of cutting process 
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Figure 12. Steps and rule-based logic for labelling. 

Furthermore, one more feature is added, it is a range for Active Power Total Average 
in observed window. Now, dataset is totally based on parameter relations, instead of values, 
so this idea is used for further processing.  The main advantage of this is providing the 
possibility to detect phases of cutting process totally regardless of parameter values, 
because they can vary due to use of different power levels of plasma machine. 

7.2 Classification methods  

This chapter discusses different classification methods we used for phase detection, as well 
as results after performing each of them. We selected two methods KNN, Multinomial 
Logistic Regression. 
  

7.2.1 KNN  
 
KNN (k-nearest neighbours’ algorithm) is commonly used for classification problems. In k-
NN classification, the output is a class membership. An object is classified by a plurality vote 
of its neighbours, with the object being assigned to the class most common among its k 
nearest neighbours (k is a positive integer, typically small). If k = 1, then the object is simply 
assigned to the class of that single nearest neighbour.  Because of its simplicity it appears 
to be a good idea to start with.  

7.2.2 Multinomial Logistic Regression  
 
On their own, logistic regressions are only binary classifiers, meaning that they cannot 
handle target vectors with more than two classes. However, two clever extensions to logistic 
regression do just that. First, in one-vs-rest logistic regression (OVR) a separate model is 
trained for each class predicted whether an observation is that class or not (thus making it 
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a binary classification problem). It assumes that each classification problem (e.g., class 0 or 
not) is independent.   

Alternatively, in multinomial logistic regression (MLR) the logistic function is replaced with 
a softmax function giving the probability of being the member of certain class.  
  
Conclusion:  KNN and MLR are common value-based classification methods, though their 
use for this case is questionable after discovering that we should not depend on the values.   

7.3 Neural Networks  

7.3.1 Fully Connected Neural Networks  
  

Parameters  
  
The neural network is built of 2 hidden layers with tanh activation function. Softmax  is 
performed on an output layer, giving the probability of belonging to each class. 
CategoricalCrossentropy 2 is used as a loss function. Adam3 is used as an optimizer. 
  

7.3.2 Recurrent neural networks  
  

Parameters  
  
Recurrent neural network is built of three hidden layers. The first one 
is LSTM layer, second and third are Dense layers. Softmax is performed on an output layer, 
giving the probability of belonging to each class. Categorical crossentropy is used as a loss 
function. Adam is used as an optimizer.    

In this section we will report results and give conclusions on usage of trained models for the 

purpose of detecting phases on plasma cutting machine relying on energy consumption 

sensors data.  

In general, there are two main approaches: 

• value dependent models (which use clear dataset from energy consumption sensors) 

• value independent models (which use feature extraction from clear dataset) 

All models can detect cutting, active state and no operation phase of plasma cutting 

machine. 

Firstly, we will discuss value dependent models which are considerably simple solutions. 

Those are models with k-nearest neighbours’ algorithm and multinomial logistic regression. 

They are very precise in detecting phases because they use parameter 'Active total power 

average' which can clearly separate those phases. On the other side, there is one constraint 

for using such models, and that is a fact claiming that levels of parameter 'Active total power 

average' can vary if plasma cutting machine uses different power levels in situation when it 

 

2  https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class   
3 https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/  

https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
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cut different materials. Conclusion is that we can use those models, which are extremely 

simple and fast, only if we know power levels that machine uses. 

If that is not the case, there is a way to classify instances with appropriate phase, if we 

extract some features from row data. Parameters THDI (total harmonic distortion current) in 

point a, b and c are differently correlated in different phases and that can be used for 

classifying (look at illustration below). Models can be trained with fully connected and 

recurrent neural networks. Those models are value-independent but much more complex in 

comparison to knn and mlr models. Furthermore, there is one constraint that we are forced 

to use rolling window technique to perform calculation of correlations and other features on 

certain window. Window size is five points long, meaning that, we cannot calculate features 

for a particular point until we have data from whole window (delay of win_size/2, because 

the observed point is in the center of the window). Nevertheless, those models proved to be 

good at detecting phases but not as precise as value-based models. 

7.4 Dataset for value-dependent models 

Dataset for value-dependent models is just clear data from energy consumption sensors. 
Useful data from energy consumption sensor look like following: 

 

Figure 13. Visualization of data from energy consumption sensor 

Sensors give more information like   total harmonic distortion voltage in several points and 
temperature average, but those data are irrelevant for this use-case. Illustration above 
shows relevant data from energy consumption sensors that will be used in further 
processing. 



D5.1 Real-time re-optimization algorithms V1.0 

 

 

73 

7.5 Dataset for value-independent models 

Extracted features are correlations between al pairs of THDI x parameters, min, max and 
mean of difference of all pairs of THDI x parameters, as well as range of active power total 
average in observed rolling window. Picture below shows dataset for value-independent 
models. 

 

Figure 14. Dataset for value-independent models 

7.6 KNN and MLR training and results 

Training dataset consists of clear data from energy consumption sensors (features are 
singled out in previous section). Training dataset is perfectly balanced and contains about 
1500 instances per phase. Training execution time is negligibly small. Trained model is 
fastest and simplest possible and very precise at random checking as expected. 
(Automatization of measuring precision process is not finished yet; only random checking 
can be performed right now. That is because we do not have accurate labels, and our idea 
was to use model that process video-frames and detect cutting phases to find intersect of 
results from all models). 

7.7 Fully connected neural network training and results 

Neural network is built of 2 hidden layers with tanh activation function. Softmax is performed 
on an output layer, giving the probability of belonging to each class. Categorical 
Crossentropy is used as a loss function. Adam is used as an optimizer. 

 

Figure 15. Layers of neural network 
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After 100 epochs of training, accuracy increased to 98%. Results are shown below.  

 

Figure 16. Results after training 100 epochs 

7.8 Recurrent neural network training and results 

Recurrent neural network is built of 3 hidden layers. The first one is LSTM layer, second and 
third are Dense layers. Softmax is performed on an output layer, giving the probability of 
belonging to each class. Categorical Crossentropy is used as a loss function. Adam is 
used as an optimizer.  

Long short-term memory (LSTM) is an artificial recurrent neural (RNN) architecture used 
in the field of deep learning. Unlike standard feedforward neural network, LSTM has 
feedback connections. It can not only process single data points (such as images), but also 
entire sequences of data. LSTM networks are well-suited to classifying based on time series 
data, since there can be lags of unknown duration between important events in a time series. 
LSTMs were developed to deal with the vanishing gradient problem that can be encountered 
when training traditional RNNs. 

Training accuracy is about 95%, as well as validation accuracy. Results are shown below. 
After 250 epochs training and validation loss become the smallest possible. 
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 Figure 17. Results after training 250 epochs 
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Appendix 1 – TUPRAS Input and Output Data Classes 

The input data provided to the optimisation module are grouped in the following public 
classes. 

    public class ProcessInstance 
    { 
        public List<InputFeed> InputFeeds { set; get; }            
        public List<OutputTank> OutputTanks { set; get; }         
        public Specifications Specs { set; get; }                 
        public OptSettings Settings { set; get; }                  
    } 
 
    public class InputFeed 
    { 
        public string InputNodeID { set; get; }                      
        public double IF_i { set; get; }                             
        public double ISU_i { set; get;  
        public double IC2_i { set; get; }                            
        public double IC5_i { set; get; }                            
    } 
 
    public class OutputTank 
    { 
        public string OutputNodeID { set; get; }                     
        public double Q_total_i { set; get; }                        
        public double Q_start_i { set; get; }                        
        public double QC5_start_i { set; get; }                      
        public double QC2_start_i { set; get; }                      
        public double QSU_start_i { set; get; }                      
    } 
 
    public class Specifications 
    { 
        public double SU { set; get; }                             
        public double C2 { set; get; }                             
        public double C5 { set; get; } 
        public double C2C5 { set; get; } 
    } 
 
 
    public class OptSettings 
    { 
        public double Horizon { set; get; }                          
        public double TimeToOptimize { set; get; } 
    } 

    public class OperationalScenarios 
    { 
        public List<UnitScenario> UnitScenarios { set; get; } 
    } 
 
    public class UnitScenario 
    { 
        public string NodeID { set; get; }                             
        public string ScenarioID_i_s { set; get; }                     
        public double E_i_s { set; get; }                              
        public List<LinkScenario> LinkScenarios { set; get; }          
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    } 
 
    public class LinkScenario 
    { 
        public string LinkID { set; get; } 
        public double CAP_ij { set; get; } 
        public double PF_i_j_s { set; get; }                            
        public double PC5_i_j_s { set; get; }                           
        public double PC2_i_j_s { set; get; }                           
        public double PSU_i_j_s { set; get; }                           
    } 

    public class Root 
    { 
        public int Id { get; set; } 
        public string Name { get; set; } 
        public Definition Definition { get; set; } 
    } 
 
    public class Parameter 
    { 
        public string Symbol { get; set; } 
        public string Description { get; set; } 
        public string Unit { get; set; } 
        public double Value { get; set; } 
    } 
 
    public class Stock 
    { 
        public double Quantity { get; set; } 
        public double ExtraQuantity { get; set; } 
        public int Consume { get; set; } 
        public bool Enabled { get; set; } 
    } 
 
    public class Node 
    { 
        [JsonProperty("$Type")] 
        public string Type { get; set; } 
        public int SpecificationMethod { get; set; } 
        public string ScriptSource { get; set; } 
        public List<Parameter> Parameters { get; set; } 
        public string Stage { get; set; } 
        public bool Solved { get; set; } 
        public string Id { get; set; } 
        public string Name { get; set; } 
        public string Description { get; set; } 
        public List<Stock> Stocks { get; set; } 
        public bool? OneToOne { get; set; } 
    } 
 
    public class Flow 
    { 
        public string Resource { get; set; } 
        public string Name { get; set; } 
        public double Quantity { get; set; } 
        public bool Manual { get; set; } 
        public bool Calculated { get; set; } 
        public string Formula { get; set; } 
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        public double Factor { get; set; } 
    } 
 
    public class Link 
    { 
        public string Source { get; set; } 
        public string Target { get; set; } 
        public List<Flow> Flows { get; set; } 
        public string Id { get; set; } 
        public string Name { get; set; } 
        public string Description { get; set; } 
    } 
 
    public class Resource 
    { 
        public string Unit { get; set; } 
        public string Id { get; set; } 
        public string Name { get; set; } 
        public string Description { get; set; } 
    } 
 
    public class Definition 
    { 
        public List<Node> Nodes { get; set; } 
        public List<Link> Links { get; set; } 
        public object Stages { get; set; } 
        public List<Resource> Resources { get; set; } 
        public List<Parameter> Parameters { get; set; } 
        public double Tolerance { get; set; } 
    } 
 

The output data provided by the optimisation module are grouped in the following public classes. 

    public class Solution 
    { 
        public List<SelectedScenario> SolutionScenarios { set; get; } 
        public double TotalEnergy { set; get; } 
        public List<SpecsKPIs> OutputKPIs { set; get; } 
        public SolutionKPIs SolKPIs { set; get; } 
    } 
 
    public class SelectedScenario 
    { 
        public string NodeID { set; get; } 
        public string ScenarioID { set; get; } 
        public string OptID { set; get; } 
    } 
 
    public class SolutionKPIs 
    { 
        public bool FoundSolution { set; get; } 
        public double TimeToSolveMillisec { set; get; } 
        public double TimeToInitializeMillisec { set; get; } 
    } 
 
    public class SpecsKPIs 
    { 
        public string OutputNodeID { set; get; } 
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        public double Quantity { set; get; } 
        public double SUperc { set; get; } 
        public double C2perc { set; get; } 
        public double C5perc { set; get; } 
        public double C2C5perc { set; get; } 
    } 
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Appendix 2 – PIACENZA Input and Output Data Classes 

The input data provided to the optimisation module are grouped in the following public 
classes. 

 
public class GeneralInfo 
    { 
        public string startDate { get; set; }  
        public string endDate { get; set; }   
       public int currentTotalSetupTime {get; set; }  
    } 
 
  public class Order 
    { 
        public string status { get; set; }  
        public int chainID { get; set; }  
        public int partID { get; set; }.   
        public int loomID { get; set; }  
        public double targetMeters { get; set; }  
        public double kStrokes { get; set; }  
        public string deliveryDate { get; set; }  
        public string type { get; set; }  
        public int fabricType { get; set; }  
        public int ca { get; set; }           
        public int cc { get; set; }               
        public int strokesPerMeter { get; set; } 
        public int yarns { get; set; }                   
        public int drawing { get; set; }              
        public int variant { get; set; }                
        public int incom { get; set; }                  
        public int comb { get; set; }                   
        public int combHeight { get; set; }        
    } 
 
public class Loom 
    { 
        public int loomID { get; set; }           
        public int loomSpeed { get; set; }     / 
    } 

public class Worker 

    { 
        public int workGroups { get; set; }   
        public string startDatetime { get; set; }  
        public string endDatetime { get; set; }  
    } 
 
public class Root 
    { 
        public GeneralInfo general_info { get; set; } 
        public List<Order> orders { get; set; } 
        public List<Loom> looms { get; set; } 
        public List<Worker> workers { get; set; } 
    } 
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The output data provided by the optimisation module are grouped in the following public classes. 

 

public class Order 
    { 
        public int chainID { get; set; }  
        public int partID { get; set; }    
        public string type { get; set; }   
        public string deliveryDate { get; set; },    
        public int loomID { get; set; }.                  
        public int setupTime { get; set; }          
        public string setupStartTime { get; set; }  
        public string setupEndTime { get; set; }    
        public string processStartTime { get; set; }  
        public string processEndTime { get; set; }   
        public int processingTime { get; set; }.        
        public int targetMeters { get; set; }  
        public double tardiness { get; set;  
    } 
 
    public class LoomsOrderSequence 
    { 
        public string _loomID { get; set; }  
    } 
 
    public class ObjectiveValues 
    { 
        public int makespan { get; set; }  
        public double totalTardiness { get; set; }  
   } 
 
 public class Root 
    { 
        public List<Order> orders { get; set; } 
        public LoomsOrderSequence loomsOrderSequence { get; set; } 
        public ObjectiveValues objectiveValues { get; set; } 
    } 
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Appendix 3 – CONTINENTAL Input and Output Data Classes 

Class Workstation  
Name Type 

WorkplaceID [PK] Int 

WorkplaceTypeID [FK] Int 

ProductionLineID [FK] Int 

SequenceInLine Int 

WorkplaceName String 

 

Class WorkplaceTypes  
Name Type 

WorkplaceTypeID  Int 

WorkplaceTypeName String 

 

Class ProductionLineTypes  
Name Type 

ProductionLineTypeID Int 

ProductionLineType String 

 

Class ProductionLines  
Name Type 

ProductionLineID  Int 

ProductionLineTypeID  Int 

ProductionLineName String 

 

Class Storage_Zones  
Name Type 

StorageZoneID [PK] Int 

StorageZoneName String 

StorageZoneCapacity Int 

 

Class Product_Inventory  
Name Type 

ProductID Int 

ProductQuantity Int 

StorageZoneID Int 

 

Class Resource_Inventory  
Name Type 

ResourceID Int 

Quantity Int 
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Class: Product_Family  
Name Type 

ProductFamilyID [PK] Int 

ProductFamilyName String 

ProductFamilyDescription String 

 

Class Product  
Name Type 

ProductID Int 

ProductName  String 

ProductFamilyID Int 

SourceLineTypeID Int 

EndLineTypeID Int 

ProductDescription String 

 

Class Product_Family_Setup_Times  
Name Type 

ProductFamilyID Int 

ProductionLineTypeID Int 

SetupTime [sec] Double 

 

Class Production_Orders  
Name Type 

OrderID Int 

OrderName String 

ProductID Int 

Quantity Int 

MaxQuantity Int 

ReleaseDate Datetime 

Priority Int 

DueDate Datetime 

 

Class Product_Processing_Times  
Name Type 

ProductID Int 

WorkplaceID Int 

IdealProcessingTime [sec] Double 

RealProcessingTime [sec] Double 

 

Class Machine_Maintenance_Activities  
WorkplaceID Int 

MaintenanceStartTime Double 

MaintenanceEndTime Double 

MaintenanceDurationTime Double 
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Class Production BOM  
WorkplaceID Int 

RequiredProductID Int 

Multiplicity Double 

ProductID Int 

 

Class Resource BOM  
WorkplaceID Int 

ResourceID Int 

Multiplicity Double 

ProductID Int 

 

Class Resources 

 
ResourceID Int 

ResourceName String 

ResourceDescription String 

 

Class Production Schedule 

 

JobID Int 

OrderID Int 

Quantity Int 

LineID Int 

SequenceID Int 

 

Class Scheduled Maintenance Activities 

 

WorkstationID Int 

MaintenanceStart DateTime 

MaintenanceEnd DateTime 

MaintenanceDuration Int 

 

Class UnScheduled Maintenance Activities 

 

WorkstationID Int 

MaintenanceStart DateTime 

MaintenanceEnd DateTime 

MaintenanceDuration Int 
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Appendix 4 – BRC Input and Output Data Classes 

 
The input data provided to the optimisation module are grouped in the following public 
classes. 

public class GeneralInfo 
  { 

public string startDate { get; set; }  
public string endDate { get; set; }   
public int currentTotalSetupTime {get; set; }  
public float lambda { get; set; }  

   } 
 

public class InputOrder 
  { 
      public int orderID { get; set; }  

public string deliveryDate { get; set; }  
  } 
 
public class InputJob 
{ 
      public int jobID { get; set; }  

public int parentID { get; set; }  
public string deliveryDate { get; set; }  
public string jobType { get; set; }  

} 
 
public class InputMachine 
{ 

public int machineID { get; set; }  
public string machineStatus { get; set; }  
public string machineType { get; set; }  

} 
 
 
public class ProcessingAndSetupTimes 
{ 

public int machineID { get; set; }  
public int jobID { get; set; }  
public float setupTime { get; set; }  
public float processingTime { get; set; }  

} 
 

The output data provided by the optimisation module are grouped in the following public classes. 

public class OutputOrder 
{ 

public int orderID { get; set; }  
public int tardyJobs { get; set; }  

} 
 
public class OuputJob 
{ 
     public int jobID { get; set; }  

public int parentID { get; set; }  
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public List<Machine> machineID { get; set; }  
public List<string> startTime { get; set; }  
public List<string> completionTime { get; set; }  

} 
public class ΟutputMachine 
{ 
     public int machineID { get; set; }  
     public List<int> jobID { get; set; }  
} 
 
public class ObjectiveValues 
{ 
        public int makespan { get; set; }  
        public int totalTardiness { get; set; }  
        public double totalLateness { get; set; }  
} 
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Appendix 5 – Analytics Classes 

z public class Datapoint 
{ 

private string timestamp; 
private float value;  
public string timestampGetSet {get; set;};  
public string valueGetSet {get; set;};   

} 
 
public class AnalysisValue 
{ 

private string analysisName;  
private string timestamp;  
private float value;  
private bool outlier;  
public string analysisNameGetSet {get; set;};  
public string timestampGetSet {get; set;};   
public float valueGetSet {get; set;};  
public bool outlierGetSet {get; set;};  

} 
 
public class Data 
{ 

private string mongoId; 
private string instanceId;  
private string arrivedTimestamp;  
private string type;  
private string startTimestamp;  
private string endTimestamp;  
private Dictionary <string, List<Datapoint>> parameterValues;   
public string mongoIdGetSet {get; set;};  
public string instanceIdGetSet {get; set;};  
public string arrivedTimestampGetSet {get; set;};  
public string typeGetSet {get; set;};  
public string startTimestampGetSet {get; set;};  
public string endTimestampGetSet {get; set;};   
public Dictionary parameterValuesGetSet {get; set;};  

} 
 
public class ModelDataResult 
{ 

private string mongoId;  
private string instanceId;  
private string arrivedTimestamp;  
private string dataId;  
private Dictionary <string, List<AnalysisValue>> analysisValues;  
private Dictionary<string, List<string>> outlierDatapoints;  
public string mongoIdGetSet {get; set;};  
public string instanceIdGetSet {get; set;};  
public string arrivedTimestampGetSet {get; set;};  
public string dataIdGetSet {get; set;};  
public Dictionary analysisValuesGetSet {get; set;};  
public Dictionary outlierDatapointsGetSet {get; set;};  

} 
 
public class DataProvider 
{ 
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private string ipAddress;  
private int port;  
private string databaseName;  
private string username;  
private string password;  
public string ipAddressGetSet {get; set;};  
public int portGetSet {get; set;};  
public string databaseNameGetSet {get; set;};  
public string usernameGetSet {get; set;};  
public string passwordGetSet {get; set;};  
public bool writeData(Data object);  
public Data readData(string instanceId);  
public bool writeModelDataResult(ModelDataResult object);  
public Data readModelDataResult(string instanceId);  

} 
 
public class FTPReader 
{ 

private string ipAddress;  
private int port;  
private string username;  
private string password;  
public string ipAddressGetSet {get; set;};  
public int portGetSet {get; set;};   
public string usernameGetSet {get; set;};  
public string passwordGetSet {get; set;};  
public bool readDataFromServer(string instanceId); 

} 
 
public class Executor 
{ 

private DataProvider dp;  
private FTPReader ftp;  
public DataProvider ipAddressGetSet {get; set;};   
public FTPReader portGetSet {get; set;};  
public List<AnalysisValue> perform_knn(Data object);  
public List<AnalysisValue> perform_mlr(Data object);   
public List<AnalysisValue> perform_nn(Data object);   
public List<AnalysisValue> perform_rnn(Data object);  
public List<AnalysisValue> perform_video_processing(Data object);  
public ModelDataResult generate_MDR(List<List<AnalysisValue>>);  

} 

 


