

Deliverable D4.4

KG-based analytics for process optimization

Version
1.0

Lead Partner
JSI

Date
30/06/2022

Project Name
FACTLOG – Energy-aware Factory Analytics for Process Industries

Ref. Ares(2022)4787565 - 30/06/2022

2

 Call Identifier
H2020-NMBP-SPIRE-2019

Topic
DT-SPIRE-06-2019 - Digital technologies for improved
performance in cognitive production plants

 Project Reference
869951

Start date
November 1st, 2019

 Type of Action
IA – Innovation Action

Duration
42 Months

Dissemination Level

X PU Public

 CO Confidential, restricted under conditions set out in the Grant Agreement

 Cl Classified, information as referred in the Commission Decision 2001/844/EC

Disclaimer

This document reflects the opinion of the authors only.

While the information contained herein is believed to be accurate, neither the FACTLOG consortium as a whole, nor any
of its members, their officers, employees or agents make no warranty that this material is capable of use, or that use of the
information is free from risk and accept no liability for loss or damage suffered by any person in respect of any inaccuracy

or omission.ca

This document contains information, which is the copyright of FACTLOG consortium, and may not be copied, reproduced,
stored in a retrieval system or transmitted, in any form or by any means, in whole or in part, without written permission.
The commercial use of any information contained in this document may require a license from the proprietor of that
information. The document must be referenced if used in a publication.

D4.4 KG-based analytics for process optimization

3

Executive Summary

This document presents the work done regarding the design and development of knowledge graph
(KG) operated cognitive services. The development work builds on initial services designed under
D3.2 Data Analytics as a Cognitive Services and ontology-based KG designed in deliverable D4.2.

Initially, the technology background is presented with description of services architecture, conceptual
design and approach in integrating KG into cognitive API analytical workflow. The redesign and
upgrade of the initial API is presented as well as its functional design.

Furthermore, in continuation, the ontology model used and KG extraction methods are explained,
including the use of domain specific concepts for data analytics in FACTLOG Ontology for cognitive
API automation. The final solution is presented on two main use cases – using a predefined AI model
and an ontology managed AI model pipeline (feature vectors and data pipeline setup).

In the final chapter, a short consolidation and interpretation of the results in the light of project’s main
objective were included. More importantly, the KG-based cognitive API enables to use initial
analytical tools developed in FACTLOG in a more generic fashion. The results show how using an
advanced approach such as ontology driven process definitions can enable new approaches in
utilizing analytical technologies for faster deployment, easier scalability and more effective
maintainability.

D4.4 KG-based analytics for process optimization

4

Revision History

Revision Date Description Organisation

0.1 10/05/2022 Table of contents JSI

0.2 20/05/2022 Initial inputs JSI

0.3 30/05/2022 Architecture, ontology schema
and schema generation

JSI, EPFL

0.4 06/06/0222 Pilot implementation, conclusion JSI, EPFL

0.5 21/06/2022 Final draft ready for review JSI

0.6 28/06/2022 Peer review TUC, SIMAVI

1.0 30/06/2022 Final version ready for submission JSI

Contributors

Organisation Author E-Mail

JSI Miha Cimperman miha.cimperman@ijs.com

JSI Jože Rožanec joze.rozanec@ijs.si

JSI Beno Šircelj beno.sircelj@ijs.si

JSI Bor Brecelj bor.brecelj@gmail.com

EPFL Lu Jinzhi jinzhi.lu@epfl.ch

mailto:miha.cimperman@ijs.com
mailto:joze.rozanec@ijs.si
mailto:beno.sircelj@ijs.si
mailto:bor.brecelj@gmail.com
mailto:jinzhi.lu@epfl.ch

D4.4 KG-based analytics for process optimization

5

Table of Contents

Executive Summary .. 3

Revision History .. 4

1 Introduction ... 7

1.1 Purpose and Scope .. 7

1.2 Relation with other Deliverables .. 7

1.3 Structure of the Document .. 7

2 Architecture and Concept design... 8

2.1 KG-based analytics API architecture ... 9

2.1.1 New model training request ... 9

2.1.2 Feature vector construction commands ... 9

2.1.3 Command structure (grammar) .. 9

2.1.4 Feature vector ... 11

2.1.5 Custom model ... 11

2.1.6 Forecasting model ... 12

2.1.7 Model ... 12

2.1.8 Model metadata ... 12

2.1.9 logs .. 13

2.1.10 New data upload .. 13

2.1.11 Ontology retrieval ... 14

3 Knowledge graph model .. 15

3.1 Ontology definition .. 15

3.2 Data analytics ontology integrating into the FACTLOG ontology 19

3.2.1 Principles ... 19

3.2.2 Methodology .. 20

3.2.3 Ontology Framework ... 21

3.2.4 Data analysis Ontology under BFO ontology.. 24

4 KG – driven model services operation ... 27

4.1 Forecasting model example .. 27

4.2 Custom model example .. 30

5 Conclusion .. 33

References ... 34

D4.4 KG-based analytics for process optimization

6

List of Figures

Figure 1. KG-based analytics conceptual design... 8
Figure 2. Ontology augmentation based on multiple API calls. .. 14
Figure 3. Hierarchy of new concepts included in Ontology .. 16
Figure 4. Ontology development workflow .. 20
Figure 5. Ontology framework based on BFO. .. 21
Figure 6. Data analytics concepts integrated with BFO ontology. .. 24

List of Tables

Table 1. Ontology concepts included in building our ontology ... 19

D4.4 KG-based analytics for process optimization

7

1 Introduction

1.1 Purpose and Scope

The purpose of this deliverable is to present KG -based analytics for process optimization services.

We present the basic requirements and goals, as well as a methodology for building a Knowledge

Graph-based analytics pipeline and analytics services operation. We have implemented a

Knowledge Core module that leverages semantic domain knowledge and automatically runs the

pipeline for analytics services. The designed interfaces allow the models to be used and integrated

into the FACTLOG infrastructure as distributed microservices components in a generic (automated

configuration) manner.

This document explains the conceptual background of KG-based analytics and provides a

description of the supporting ontologies, the developed tools, the selected technologies, the

architectural approach, and the final implementation demonstrated in specific pilots of FACTLOG

project.

1.2 Relation with other Deliverables

This work builds on the developments presented in Deliverables D4.1, D4.2, and D4.3. The KG-

based analytics for process optimization provides the means to extend the existing processes with

ontology-related knowledge to build machine learning models for advanced use cases. This provides

baseline ontology models that can be used to facilitate the development of final models for specific

use cases.

This deliverable also builds on the basic cognitive API architecture, developed, and presented in

Deliverable D3.2 -Data Analytics as a Cognitive Service, in which all the analytical tools from WP2

are consolidated. The initial API enables processing analytical services developed based on

predefined use case requirements. The initial API has been extended with an ontological engine that

enables automation of service configuration while building internal data structures essential for

processing analytic services (e.g., automatic design of feature vector structures).

The services listed in this deliverable will be used in the pilots and therefore will also have some

relation to all the deliverables describing the final deployments.

1.3 Structure of the Document

Following the introduction in Section 1, Section 2 explains the architectural approach in augmenting

cognitive services with ontological model. This includes services designed based on the developed

analytic components, the configuration of services for the development of feature vectors, and the

querying of model services. Section 3 describes the created ontology and ontological model, as well

as the ontology augmentation used in API design. Section 4 presents two main examples of using

ontology-based services and feature vector configurations. Section 5 presents the interpretation of

the final results, key results and achievements in the light of the initial project goals and objectives.

D4.4 KG-based analytics for process optimization

8

2 Architecture and Concept design

The Knowledge Graph-based analytics process optimization was designed as a service backed with

a knowledge graph and providing its functionality through an HTTP Application Programming

Interface (API). The main goals of the service were to provide application endpoints where: (a) given

a description of a use case and a dataset, a baseline model can be created that leverages domain

knowledge about that specific use case; and (b) given a description of a machine learning task, a

model can be trained. In both cases, the machine learning model would be made available for future

use.

To build the knowledge graph and establish a common vocabulary, we first defined an ontology

(more details in Section 3.1). Based on the ontology concepts, we then defined the HTTP API and

the required JSON format to perform application queries (more details in Section 2.1). A knowledge

graph was initialized to record relevant information about the queries to the application and domain

information about the datasets, features, and algorithms used to train the models, along with the

performance of the machine learning models, the binaries of the trained models, and other relevant

metadata. The binaries and the performance of the models could be used to decide whether to use

the models in production and how to use them. In addition, the stored knowledge could later be used

to learn common patterns and identify best practices that would lead to better performance of the

machine learning models.

The architecture is depicted in the following figure.

Figure 1. KG-based analytics conceptual design.

Figure 1 shows the sequence of actions performed for each request. The requests are triggered by

an external service (A) via an HTTP API, and most of the information received via JSON is parsed

and used to determine the details of the training process (B). In addition, the specific process is

assigned a Universally Unique Identifier (UUID) that is stored in the Knowledge Graph (C) along with

the data received in the incoming request and JSON snippet. If the creation of specific features is

D4.4 KG-based analytics for process optimization

9

needed, a grammar is used to parse the description with the variables and functions used to create

such features (D). Then, a machine learning model is trained (E) with the corresponding dataset (E),

taking into account the reference machine learning algorithm (either specified by the user or used

by default for a given use case). Finally, the model is stored in the file system (F). The binary file of

the model and its associated metadata can be retrieved from HTTP API through a specified endpoint.

The architecture was implemented in an application using the Flask framework.

2.1 KG-based analytics API architecture

2.1.1 New model training request
A submission can be sent to train a new model, identified with its own universally unique identifier

(UUID). Since model building can take a long time, this is done asynchronously. The model can be

retrained by using model retrieval endpoints, with the assigned UUID of the model, which triggers

the progress of model training, logs, and retrieval of the model itself.

2.1.2 Feature vector construction commands
Custom features can be constructed from a set of commands. These commands are a list of

assignments, where each assignment can create a variable for each row of the dataset in order to

be later used as features. The commands are specified in a json structure. If for any reason, the

value of a feature vector for a certain row is None, that row is excluded from training.

2.1.3 Command structure (grammar)
Root element starts with the key “feature_commands”. The value is one or more Assignments.

Commands -> {"feature_commands": [Assignment*]}

Assignment initializes a new variable. These variables can be used as features or as parts of later
commands.

Assignment -> {"type": "assignment"

 "to": String

 "from": Value}

Value holds either the result of an operator or data. Data can come from a variable previously

assigned, sensor data or a constant. The constants are the same for all rows, sensor data can be

preprocessed before usage. Sources can be previously defined variables, sensor names, control

parameters or laboratory measurements. The types of preprocessing include:

● AggregateData

o window: specifies for how many elements in the past the operation is executed

o mean: calculates mean of all the elements in the time window

o median: calculates median of all the elements in the time window

o slope: computes percentage change from the current element versus the element at

the beginning of the time window

● SingleData

o The data with a single operator is just point data that can be shifted by an offset.

Offset of -1 means the data in the previous time instance is used.

● BooleanData

D4.4 KG-based analytics for process optimization

10

o If the value in the row is strictly above lower_bound or strictly below upper_bound the

value is 1 and 0 otherwise. If any of the bounds is missing it is automatically set to –

infinite (-∞) and infinite (-∞), respectively.

Value -> Data | Operator

Data -> Sensor | Constant | Variable

Sensor -> AggregateData | SingleData | BooleanData

AggregateData -> {"type": "data",

 "operator": "mean" | "median" | "slope",

 "source": String,

 "window": Integer,

 }

SingleData -> {"type": "data",

 "operator": "single",

 "source": String,

 "offset": Integer

 }

BooleanData -> {"type": "data",

 "operator": "boolean",

 "source": String,

 "lower_bound": Float,

 "upper_bound": Float

 }

Constants are a single number or None. Variables have to be defined in previously executed
commands.

Constant -> {"type": "constant",

 "value": Float | None}

Variable -> {"type": "variable",

 "name": String}

Operators execute the operation between all the arguments and return a value.

sqrt: square root of the value

not: If the value is non-zero it sets if to 0. If the value is 0 it sets it to 1.

log: Computes the natural logarithm of Value.

 "+" | "-" | "*" | "/" : Calculates Value1 [operator] Value2

 "and" | "or" | "<=" | ">=" | "<" | ">" | "==": Calculates Value1 [operator] Value2. All the logical operators
return 1 for true and 0 for false.

pow: Calculates Value1 to the power of Value2.

Operator -> UnaryOperator | BinaryOperator | If

D4.4 KG-based analytics for process optimization

11

UnaryOperator -> {"type": "operator",

 "operator": "sqrt" | "not" | "log",

 "arguments" : [Value]}

BinaryOperator -> {"type": "operator",

 "operator": "+" | "-" | "*" | "/" | "pow" | "and" | "or"

 | "<=" | ">=" | "<" | ">" | "==",

 "Arguments": [Value, Value]}

If is a special type of an operator. First the condition is evaluated for each row. For rows with
elements of 1 the true Value is chosen, for rows with 0, the false Value is chosen.

If -> {"type": "operator",

 "operator": "if",

 "condition" : Value,

 "true": Value,

 "false": Value}

2.1.4 Feature vector
Feature vector is a list of variables, sensor names, control parameters or laboratory measurements
that belong to a single unit.

Example:

The command constructs a custom feature named “median2” which is later used as a first element
of the feature vector.

"feature_commands": {

 "type": "assignment",

 "to": "median2",

 "from": {

 "type": "data",

 "operator": "median",

 "source": "5FIC366.PV",

 "window": 2

 }

 },

 "feature_vector":["median2", "median3","5FI370.PV","5FIC386.PV"]

2.1.5 Custom model
POST http://goat.ijs.si:6780/new_custom_model

This endpoint creates a custom model. The request contains the following structure:

● unit: on which unit the feature is constructed, and the model is trained

● feature_commands: a set of commands described in Section 2.1.3 that construct variables which

can be used as a features

● feature_vector: list of features described in Section 2.1.4

● target: The target value which the model is predicting. Only a single target is available.

● test: Optional parameter. If set to “True”, the dummy model will be returned. This is used for

testing the APIs input and output without waiting for the model to finish training.

● model: Selects which model is used. The options are:

o CatBoostRegressor

o XGBRegressor

D4.4 KG-based analytics for process optimization

12

o LinearRegression
o SVR

2.1.6 Forecasting model
This endpoint constructs a new model for forecasting the state of the unit. The model predicts the

state of all sensors and uses as input all sensor values and all control parameters. How much of the

past values will be used as input and for what horizon in the future the predictions will be made, can

be specified in the parameters at the time of the request. Since the model uses a fixed set of inputs,

the feature vector will be a list of SingleData instances that contains either shifted sensor values

from encoder time up to present and control parameters for the time of the prediction.

The request for new sensor state forecasting model can be done through

POST http://goat.ijs.si:6780/new_forecasting_model

Parameters:

● unit: Name of the unit on which the model is done. Example:

CrudeDistillationUnit-2

● encoder: number of past inputs which model will take. Example: 20. In this case, the model

needs all sensor values from 20 minutes in the past up to the present.

● horizon: For how many minutes in the future the forecast will be made. Example: 60. In this

case, 60 minutes into the future will be the forecast time. The control parameters which are

provided need to be chosen for this time.

2.1.7 Model
Once the model is trained, the model can be obtained with the following request:

GET http://goat.ijs.si:6780/get_model/<uuid>

The <uuid> is the identifier that was returned when the request was made. The specifics for how to

load and use each model can be found in the metadata.

2.1.8 Model metadata

Metadata can be retrieved with the following request:

GET http://goat.ijs.si:6780/get_metadata/<uuid>

The metadata includes information about the feature vector construction, training metrics and model

parameters. The structure is a json with the following fields:

● UUID: the universally unique identifier which was assigned to this model

● config: the configuration file which was sent along with the request for this model

● metrics: shows metrics such as Mean Average Error (MAE) or Root Mean Squared Error

(RMSE). In case of quantile results, these metrics were calculated only on the most likely

prediction (quantile 0.5)

● feature_vector: exact order of features that the model requires. Features are variable names

in the case of the custom model and SingleData instances in the case of forecasting model.

The specific of the feature construction can be found in the config parameter which shows

all the options the request was called with.

D4.4 KG-based analytics for process optimization

13

● model_type: model type
● model_usage: Instruction on how to load and use the model
● status: Status of the model training. Possible statuses:

o processing – model is still being trained
o successful – training finished successfully, the model can be retrieved
o error – something went wrong, and the training is not done

2.1.9 logs
Logs can be retrieved with the following request:

GET http://goat.ijs.si:6780/get_logs/<uuid>

The logs show the parameters of the query calls. The process of the feature vector constructor and

the training of the model can be seen. The most important feature of the logs is the display of errors

that occurred during the processing of the query.

2.1.10 New data upload

New data can be uploaded at the following endpoint:

POST http://goat.ijs.si:6780/datasets/upload

The structure of the request is the following:

“file”: <unit_name>.csv

“data_schema_entry”: {{<unit_name>: {{sensors: []*, targets: []*,

controls: []*}} }}

Dataset file along with the appropriate information needs to be uploaded. Example data file content:

datetime,sensor1,sensor2,target1,target2,control1

1514764860,1,2,3,4,5

1514764920,0,0,0,0,0

1514764980,1,5,2,5,4

The required file structure is .csv with the first row being the header. Necessary column is datetime
which needs to have timestamp values in unix time. Each column needs to be classified in one of
the three categories:

● sensors: sensor data available for the unit;
● targets: sensor or laboratory measurements data which can be used as target for models;
● controls: these are the control parameters which are set by the user.

In this case the data_schema_entry json needs to be the following:

{

 "test_unit": {

 "sensors": [

 "sensor1",

 "sensor2"

],

 "targets": [

 "target1",

 "target2"

D4.4 KG-based analytics for process optimization

14

],

 "controls": [

 "control1"

]

 }

}

2.1.11 Ontology retrieval
Each successful query updates the ontology with data about new models. The current ontology can
be retrieved via the endpoint:

GET http://goat.ijs.si:6780/get_ontology

The endpoint returns a file named FACTLOG-ontology-models-representation.owl. All relevant
information about each operation performed on the above endpoints is stored in the ontology-based
Knowledge Base. Figure 2 shows an example of individuals obtained after multiple endpoint
executions.

Figure 2. Ontology augmentation based on multiple API calls.

D4.4 KG-based analytics for process optimization

15

3 Knowledge graph model

3.1 Ontology definition

The need to encode domain knowledge in the context of data mining processes is not new and has

been addressed by several researchers in the past. Such efforts need to be considered in order to

build a unified ontology that can handle multiple use cases and provide intelligence for building

machine learning models that solve the challenges associated with each use case. Following the

MIREOT principle [1], we analyzed ontologies related to the artificial intelligence domain. In paper

[2], DAMON (Data Mining Ontology for Grid Programming) was developed to provide a reference

model for data mining tasks, methodologies, and available software. A heavyweight ontology was

developed by [3,4], which provides means for representing data mining entities, inductive queries,

and data mining scenarios. In paper [5] KDDONTO was developed, which focuses on the discovery

of data mining algorithms.

One of the possible approaches for developing machine learning models is the standard CRISP-

DM, which specifies six phases of model development: business understanding, data understanding,

data preparation, modeling, evaluation and deployment. With KG-based analytics for process

optimization, we aim to capture some business understanding so that baseline models can be

created for a given use case, regardless of the amount of domain knowledge of the person

requesting such a model. In addition, the service provides means for data preparation, modeling,

and evaluation. If there is insufficient knowledge about a particular use case in the knowledge base,

a more detailed specification of the data mining task is required, indicating how the features should

be built.

The ontologies mentioned above provide a solid foundation for building a unified ontology that can

be used to encode domain knowledge related to multiple use cases and automatically building

baseline artificial intelligence models for them. In particular, we used the Basic Formal Ontology to

define the upper classes and sought concepts and terminology defined in the Information Artifact

Ontology (IAO), Ontology of Data Mining (OntoDM), DAta Mining ONtology (DAMON), and the Data

Mining OPtimization Ontology (DMOP). This particular ontology was incorporated into the broader

ontology developed for the FACTLOG project and presented in D4.2. We developed and persisted

the ontology using the Web Ontology Language (OWL). Figure 3 shows a screenshot of the ontology

we developed, while Table 1 describes all ontology concepts and the reference ontologies from

which they were taken.

D4.4 KG-based analytics for process optimization

16

Figure 3. Hierarchy of new concepts included in Ontology

Upper
ontology

Concept Description

BFO Thing Thing is considered the highest-level concept,
from which the rest of the concepts descend.

BFO Continuant A continuant is an entity that persists, endures,
or continues to exist through time while
maintaining its identity.

 Generally Dependent Continuant Dependent continuants are related to their
bearers by inherence. Inherence is defined as a
one-sided, existential dependence relation.
Generally Dependent Continuants can exist in a
multiplicity of bearers.

OntoDM,
DMOP

Algorithm A data mining algorithm is an algorithm that
solves a data mining task and as a result
outputs a generalization, which is realized in a
Machine Learning Model. It is usually published
in some document (journal publication or
technical report). Aligns with DMOP DM-
Algorithm, and the OntoDM Data Mining
Algorithm concepts.

D4.4 KG-based analytics for process optimization

17

Upper
ontology

Concept Description

OntoDM Regression Algorithm Regression algorithm is a data mining algorithm
that solves a regression task and as a result
produces a regression model.

IAO Information Content Entity An entity which is generically dependent on
some material entity and which stands in a
relation of aboutness to some entity.

OntoDM Attribute Qualities of a dataset so the relation to the
class Dataset is expressed via the property
has_quality Attribute.

Attribute Definition Definition of a given attribute.

OntoDM Attribute Role Role of the attribute in a given Dataset.

Attribute Role Target Signals Target role in a particular Dataset.

Attribute Value Value of a given Attribute.

Constant Invariable or unchanging value.

Data Facts and statistics collected together for
reference or analysis.

Variable A quantity that may assume any one of a set of
values.

OntoDM Data Example A data example is a data item that represents
one unit of data, and it is a part of a dataset. It
is a synonym with a case or example or
observation in statistics.

OntoDM Data Mining Task A data mining task is an objective specification
that specifies the objective that a data mining
algorithm needs to achieve when executed on a
dataset to produce as output a generalization.

OntoDM Predictive Modeling In the task of predictive modeling, we are given
a dataset that consists of examples of the form
(d,o), where d is of type Td and each o is of
type To. To learn a predictive model means to
find a mapping from description to output
m::Td--->To that fits data closely.
Aligns with OntoDM Predictive Modeling Task
concept.

OntoDM Dataset A collection of data.

OntoDM Labeled Dataset Labeled dataset is a dataset specification for
datasets that have both a descriptive and
output specification of the data examples
contained in the dataset.

D4.4 KG-based analytics for process optimization

18

Upper
ontology

Concept Description

OntoDM Dataset Specification A dataset specification is a data item
specification about a dataset defined with a
data type specification of the data examples
aggregated in the dataset.

DAMON Data Source The input on which data mining algorithms work
to extract new knowledge.

Data Structure Represents a data organization, management,
and storage format that enables efficient access
and modification.

Data Type Specifies which type of value a variable has
and what type of mathematical, relational or
logical operations can be applied to it without
causing an error.

Native Data Type Data types that cannot be divided into other
Data Types. Common Native Data Types are
booleans, integers, or characters.

Structured Data Type User-defined data type containing one or more
named attributes, each of which has a data
type.

Feature Vector Vector of features used to issue a prediction
with a machine learning model.

Feature Commands The commands are a list of assignments, each
assignment can create a variable used by
following commands or a feature used for a
specific data mining task.

OntoDM Predictive Model A predictive model M for types Td and Tc is a
function that takes an object of type Td and
returns an object of type Tc, i.e. has the
signature m:Td-->Tc.

OntoDM Regression Model A regression model is a feature-based
predictive model for primitive output and
denotes predictive models that are built on data
having a real datatype on the output part and
set of features (represented by a descriptive
tuple of primitives) on the descriptive part.

Metrics Metrics calculated for the model evaluated on a
validation dataset.

DMOP Operator A mapping or function that acts on elements of
a space to produce elements of another space.
Aligns with the DMOP DM-Operator concept.

Binary Operator An operator that operates on two operands and

D4.4 KG-based analytics for process optimization

19

Upper
ontology

Concept Description

manipulates them to return a result

If Operator Evaluates a condition and assigns either value
chosen for true result or value chosen for false
result to the chosen target.

Unary Operator An operator used to operate on a single
operand to return a new value.

Table 1. Ontology concepts included in building our ontology

3.2 Data analytics ontology integrating into the FACTLOG ontology

3.2.1 Principles

Entities in the FACTLOG semantic framework have been arranged based on the Basic Formal

Ontology (BFO) which is a formal ontology framework developed by Barry Smith and his

associates [6]. In BFO, there are two varieties which are continuants comprehending continuant

entities such as three-dimensional enduring objects and occurrents comprehending processes

conceived as extended through (or as spanning) time. To adopt BFO framework will provide

availability to merge the other Cognitive Twin domain ontology structured by BFO. The method of

ontology design is presented on Figure 4 below.

Originated from BFO, ontology design principles of FACTLOG are as follows:

● use single nouns (except data) and avoid acronyms

● ensure unicity of terms and relational expressions

● distinguish the general from particular

● provide all non-root terms with definitions

● use essential features in defining terms and avoid circularity

● start with the most general terms in the domain

● use simpler terms than the term you are defining (to ensure intelligibility)

● do not create terms for universals through logical combination

● structure ontology around is_a hierarchy and ensure is_a completeness

● single inheritance

D4.4 KG-based analytics for process optimization

20

3.2.2 Methodology

Figure 4. Ontology development workflow

In order to design the unified ontology for developing knowledge graph models supporting

cognitive capabilities, one of the most well-known systems thinking development methodology

(D8.3) through domain knowledge has been applied to define the domain knowledge including: (i)

pilot information; (ii) process modeling; (iii) optimization; (iv) data analysis; (v) anomaly detection.

IoF ontology (industrial Ontology Framework), BFO ontology and IoF SE ontology are three main

reference ontologies. By composing a top-level overview, abstract concepts form domain specific

knowledge from FACTLOG pilots and technical views. After the extraction of entities from

FACTLOG pilots, the list of classes was updated in a comparison with existing ontology such as

IOF-SE ontology, and IOF ontology. And then, all the entities were rearranged in the BFO

structure. Finally, the SQWRL and SPARQL are used to support reasoning and query of the OWL

models.

All the ontology concepts are mainly used for three aspects:

1. Unified description of digital twin and information across the FACTLOG platform.

2. Ontology reasoning for anomaly detection.

3. Visualization of the interrelationships of all the ontology entities and individuals.

D4.4 KG-based analytics for process optimization

21

3.2.3 Ontology Framework

Figure 5. Ontology framework based on BFO.

As shown in Figure 5 the FACTLOG ontology is developed based on basic formal ontology. The red

blocks refer to BFO and IoF concepts. The purple blocks refer to domain concepts. The blue ones

which are defined under BFO and domain concepts are used to define FACTLOG concepts. The

whole FACTLOG entities include occurrent and continuant entities.

• A continuant is an entity that persists, endures, or continues to exist through time while

maintaining its identity.

• An occurrent is an entity that unfolds itself in time or it is the instantaneous boundary of such

an entity (for example a beginning or an ending) or it is a temporal or spatiotemporal region

which such an entity occupies_temporal_region or occupies_spatiotemporal_region.

Under the occurrent entity, several concepts are defined:

• Process: an occurrent that has temporal proper parts and for some time t, p s-depends_on

some material entity at t.

• Process_boundary: a temporal part of a process and the process has no proper temporal

parts.

• Service: Service is delivered when the service implements the system function.

• Spatiotemporal_region: an occurrent entity that is part of spacetime.

• Temporal_region: an occurrent entity that is part of time as defined relative to some

reference frame.

Under the continuent entity, several concepts are defined:

• generically_dependent_continuant is a continuant that generally depends on one or more

other entities.

• independent_continuant, a continuant which is such that there is no c and no t such that b

s-depends_on c at t.

• specifically_dependent_continuant, a continuant and there is some independent

continuant c which is not a spatial region and which is such that b s-depends_on c at every

time t during the course of b’s existence

D4.4 KG-based analytics for process optimization

22

Under generically_dependent_continuant entity, several concepts are defined:

• Information_content_entity, a generically dependent continuant that is about something.

o Process_model_entity, a virtual concept used to define process model.

o Optimization_entity, a virtual concept used to define optimization concept.

o Simulation_model_entity, a virtual concept used to define simulation model

concepts.

o Pilot_parameter_concept, a virtual entity to define FACTLOG pilot parameters.

▪ General sensor data, sensor data used for all the FACTLOG pilot

o Directive_information_entity, a plan specification which describes the inputs and

output of mathematical functions as well as workflow of execution for achieving a

predefined objective. Algorithms are realized usually by means of implementation as

computer programs for execution by automata.

o Anomaly_entity, a virtual entity to support anomaly detection.

o Data_analysis_entity, a virtual entity used for data analysis.

• Specifically_dependent_continuant, is a continuant and there is some independent
continuant c which is not a spatial region and which is such that b s-depends_on c at every
time t during the course of b’s existence

o Quality, a specifically dependent continuant that, in contrast to roles and dispositions,
does not require any further process in order to be realized.

▪ FACTLOG_BRC_quality_entity, quality used in the BRC pilot.

▪ FACTLOG_Continental_quality_entity, quality used in the Continental pilot.

▪ FACTLOG_JEMS_quality_entity, quality used in the JEMS pilot.

▪ FACTLOG_Piacenza_quality_entity, quality used in the Piacenza pilot.

▪ FACTLOG_TUPRAS_quality_entity, quality used in the TUPRAS pilot.

o realizable_entity, a specifically dependent continuant that inheres in some

independent continuant which is not a spatial region and is of a type instance of which

are realized in processes of a correlated type.

▪ Disposition, a realizable entity and b’s bearer is some material entity and b

is such that if it ceases to exist, then its bearer is physically changed, and b’s

realization occurs when and because this bearer is in some special physical

circumstances, and this realization occurs in virtue of the bearer’s physical

make-up.

➢ Function, a disposition that exists in virtue of the bearer’s physical

make-up and this physical make-up is something the bearer

possesses because it came into being, either through evolution (in the

case of natural biological entities) or through intentional design (in the

case of artifacts), in order to realize processes of a certain sort.

❖ FACTLOG_continental_function_entity, functions used in

Continental pilot.

D4.4 KG-based analytics for process optimization

23

▪ Role, a realizable entity and b exists because there is some single bearer that

is in some special physical, social, or institutional set of circumstances in

which this bearer does not have to be and b is not such that, if it ceases to

exist, then the physical make-up of the bearer is thereby changed.

• Independent_continuant, a continuant which is such that there is no c and not such that b

s-depends_on c at t.

o immaterial_entity, which are divided into two subgroups: boundaries and sites,

which bound, or are demarcated in relation, to material entities, and which can thus

change location, shape and size and as their material hosts, move or change shape

or size (for example: your nasal passage; the hold of a ship; the boundary of Wales).

▪ Site, three-dimensional immaterial entity that is (partially or wholly) bounded

by a material entity or it is a three-dimensional immaterial part thereof.

➢ BRC_site, site used in BRC.

➢ Continental_site, site used in Continental.

➢ TUPRAS_site, site used in TUPRAS.

o material_entity, which can preserve their identity even while gaining and losing

material parts. Continuants are contrasted with occurrents, which unfold themselves

in successive temporal parts or phases.

▪ Object, a material entity which manifests causal unity of one or other of the

types listed above and is of a type (a material universal) instance of which are

maximal relative to this criterion of causal unity.

➢ Artifact, an Object that was designed by some Agent to realize a

certain Function.

❖ Sensor, a device that produces an output signal for the

purpose of sensing a physical phenomenon.

❖ Processing stock, is an artifact in an industrial site

corresponding to any material in the process of producing or

manufacturing finished product.

❖ Machine component, compositions for constructing

machines.

❖ Machine, a physical system using power to apply forces and

control movement to perform an action.

❖ Equipment, the set of physical resources serving to equip a

person or thing implementing used in an operation or activity

▪ Person, an object that is a human being.

➢ Object_aggregate, an object aggregates if and only if there is a

mutually exhaustive and pairwise disjoint partition of that object into

other objects.

➢ Artifact_aggregate, a collection of artifacts that are arranged by some

Agent to realize a certain Function.

D4.4 KG-based analytics for process optimization

24

❖ BRC_unit, a company group generally equivalent in size and

character to implement BRC services.

❖ Continental_unit, a company group generally equivalent in size

and character to implement Continental services.

❖ JEMS_unit, a company group generally equivalent in size and

character to implement JEMS services.

❖ Piacenza_unit, a company group generally equivalent in size

and character to implement Piacenza services.

❖ TUPRAS_unit, a company group generally equivalent in size

and character to implement TUPRAS services.

▪ Organization, an object aggregate that corresponds to social institutions such

as companies, societies etc. that does something.

➢ Department, an organizational unit in FACTLOG.

3.2.4 Data analysis Ontology under BFO ontology

Figure 6. Data analytics concepts integrated with BFO ontology.

As shown in Figure 6, the data analysis ontology is integrated into BFO ontology.

Data_analysis_entity includes several classes:

…

• data_analysis_attribute, attributes used for data analysis

• data_analysis_AttributeDefinition, attribute definition used for data analysis

D4.4 KG-based analytics for process optimization

25

• data_analysis_AttributeRole, the role of the attribute used for data analysis

o data_analysis_AttributeRoleFeature, role feature of attribute for data analysis

o data_analysis_AttributeRoleTarget, role feature of attribute for data analysis

o data_analysis_AttributeValue, attribute value of data analysis

o data_analysis_Constant, constant value of data analysis

o data_analysis_Data, data for data analysis

o data_analysis_Variable, variable for data analysis

• data_analysis_DataExample, data example for data analysis

• data_analysis_DataMiningTask, data mining task for data analysis

o data_analysis_PredictiveModelling, Predictive Modeling entity for data analysis

• data_analysis_Dataset, data set for data analysis

• data_analysis_DatasetSpecification, Data set specification of data analysis

• data_analysis_DataSource, Data resource of data analysis

• data_analysis_DataStructure, Data structure of data analysis

• data_analysis_DataType, Data type of data analysis

o data_analysis_NativeDataType, Native Data Type for data analysis

o data_analysis_StructuredDataType, Structured Data Type for data analysis

• data_analysis_FeatureVector, Feature Vector for data analysis

• data_id_entity_for_data_analysis, data id entity for data analysis

o controller_id_for_data_analysis

o sensor_id_for_data_analysis

o target_Id_for_data_analysis

o unit_Id_for_data_analysis

• interelationships_for_data_analysis, interrelationships among data analysis entities

o sequence_from_unit_to_unit, a directional relationship from one unit to another unit

…

• algorithm

o RegressionAlgorithm, regression algorithm for data analysis

• Operator_for_programming_language_of_data_analysis, operator used in the programming

language of data analysis

o BinaryOperator, Binary operator used for programming data analysis algorithm

o IfOperator, If operator used for programming data analysis algorithm

o UnaryOperator, Unary operator used for programming data analysis algorithm

D4.4 KG-based analytics for process optimization

26

…

• simulation_model

o JEMS_simulation_model

■ RegressionModel, regression model for data analysis

D4.4 KG-based analytics for process optimization

27

4 KG – driven model services operation

The initial ontology engine was integrated into the cognitive services architecture. The initial

cognitive API has been extended to allow both the use of existing cognitive services and the creation

of AI models on-the-fly with fully custom model configuration. The predefined/configured models can

be used to enable "simple/light use" of services for some of the main use cases, such as streaming

sensor data prediction. The custom endpoints, on the other hand, enable the implementation of any

specific use case scenario for smart factory operations. In the following two sections, we present a

pilot case that leverages both main use cases for ontology-based cognitive API usage.

4.1 Forecasting model example

The forecasting model endpoint supports the construction and retrieval of models built for the use

case of sensor data prediction from Deliverable D3.2. The use case which is supported uses all

available data from one unit and predicts all sensor data for the same unit.

The parameters for forecasting model call can be seen in Section 2.1.6. For this example, we want

to make a model that predicts all sensors for 60 minutes into the future and uses the last 20 minutes

of data. The service needs to be called with only three parameters: encoder, horizon and unit. All

the other parameters such as control parameters and sensor list are fetched from ontology and don’t

need to be provided. The service always uses a full sensor and control parameter list when building

the models. The data about the model inputs and usage can be found in model metadata. In this

example we would call the /new_forecasting_model with the following parameters:

{

 "unit": "CrudeDistillationUnit-2",

 "encoder": 20,

 "horizon": 60

}

The server returns a response:

200 OK :

{

 "UUID": "64aeba8a-9314-480e-95b2-6629e8a90cf6"

}

If we immediately try to get the model at /get_model/<uuid> we get:

400 BAD REQUEST :

The model is still in training. Please try again later.

The model training can take quite a while, especially if the encoder length is big and if the unit has

many sensors. We can check the status of the training either in

● The model metadata under tag status. Now it should be set at processing and should change

to either successful or error.

● Send a request for the model again. Once done, the model should return with a HTTP status

code of 200 if successful or 400 otherwise.

● Check the /get_logs endpoint. In logs, the training progress is displayed. Example for our

case:

D4.4 KG-based analytics for process optimization

28

2022-06-08 13:17:17,642 [INFO] Start of CrudeDistillationUnit-2

2022-06-08 13:17:17,656 [INFO] Train and validation pair construction

2022-06-08 13:17:22,661 [INFO] Available device: cuda

2022-06-08 13:17:23,009 [INFO] Model fitting

2022-06-08 13:17:29,146 [INFO] Optimal learning rate found:

0.0009999999999999994

2022-06-08 13:17:29,398 [INFO] Saving model to:

data/users/64aeba8a-9314-480e-95b2-6629e8a90cf6/model.pt

2022-06-08 13:17:37,451 [INFO] Model training finished successfully

Once we know the training is finished, we can save the model locally.

response =

requests.get(url=f"http://goat.ijs.si:6780/get_model/64aeba8a-9314-480e-

95b2-6629e8a90cf6")

with open('model.pt', 'wb') as f:

f.write(response.content)

We can check the metadata for details about the model. The metadata is available at:

GET http://goat.ijs.si:6780/get_metadata/64aeba8a-9314-480e-95b2-6629e8a90cf6

The important thing here is the feature vector. The feature vector defines what kind and in what order
the input data should be used for using the model.

{

 "UUID": "64aeba8a-9314-480e-95b2-6629e8a90cf6",

 "config": { },

 "feature_vector": [

 {

 "offset": -19,

 "operator": "single",

 "source": "5FIC365.PV",

 "type": "data"

 },

 {

 "offset": -19,

 "operator": "single",

 "source": "5TI469.PV",

 "type": "data"

 },

…

 {

 "offset": 0,

 "operator": "single",

 "source": "5TI485.PV",

 "type": "data"

 },

 {

 "offset": 60,

 "operator": "single",

 "source": "5FIC365.SV",

 "type": "data"

 },

 {

D4.4 KG-based analytics for process optimization

29

 "offset": 60,

 "operator": "single",

 "source": "5FIC369.SV",

 "type": "data"

 },

…

],

 "metrics": {

 "MAE": 2.8333,

 "RMSE": 3.5609

 },

 "model_type": "TorchNetworkQuantile",

 "model_usage": "model = TorchNetworkQuantile()

model.load('model.pt')

Example of model loading and usage can be found on

https://github.com/JozefStefanInstitute/factlog-data-

pipeline/tree/main/api/examples/new_forecasting_model_example.py",

 "status": "successful"

}

Metadata includes UUID, original request config, feature vector, metrics, model type, usage and

status.

The feature vector is expressed using feature construction command notation for singular data

described in Section 2.1.3. We can see that it uses all sensors from the past 20 minutes (offset -19)

in the past up to current time (offset 0) and also requires the control parameters at the time of the

forecast (offset 60).

Model can be loaded and called with appropriate feature vector:

 model = TorchNetworkQuantile()

 model.load('model.pt')

 with open('example_feature_vector_forecasting.json', 'rb') as f:

 fet = json.load(f)

 feature_vector = fet['feature_vector']

 result = model.predict(feature_vector)

Giving us a result:

[array([1114.70983887, 1148.42504883, 1171.24401855]),

array([79.30570984, 87.68345642, 91.94986725]), array([367.06661987,

382.61004639, 419.50704956]), …]

The model is a quantile model meaning it outputs 3 values for each prediction, the lower bound
(quantile 0.1), the most likely prediction (quantile 0.5) and upper bound (quantile 0.9).

D4.4 KG-based analytics for process optimization

30

4.2 Custom model example

The functionality of the models constructed here can support the use cases of estimating energy

consumption and C2/C5 impurity content regarding Tupras pilot case. The same models that were

constructed manually in the D3.2 can also be constructed using this endpoint.

Parameters for the custom model include unit, target, feature commands, and feature vector. Unit is

the entity from which the model will obtain data. Target is the name of a sensor, variable, or

laboratory measurement that exists on the unit. Unlike with forecasting models from the previous

section, for the custom model, all features must be defined when making the request. This must be

done using feature construction commands. Its structure is described in Section 2.1.3.

The configuration example:

{

 "unit": "CrudeDistillationUnit-2",

 "target": "Energy Exchanger 5E-12 [kJ/h]",

 "feature_commands": [...],

 "feature_vector": [...],

}

Feature vector and its construction commands example:

 “feature_commands”: [

 {

 "from": {

 "operator": "median",

 "source": "5FIC366.PV",

 "type": "data",

 "window": 2

 },

 "to": "median2",

 "type": "assignment"

 },

 {

 "from": {

 "offset": -1,

 "operator": "single",

 "source": "5TI472.PV",

 "type": "data"

 },

 "to": "Tc",

 "type": "assignment"

 },

 {

 "from": {

 "condition": {

 "lower_bound": 300,

 "operator": "boolean",

 "source": "Tc",

 "type": "data",

 "upper_bound": 800

 },

 "false": {

D4.4 KG-based analytics for process optimization

31

 "type": "constant",

 "value": 0

 },

 "operator": "if",

 "true": {

 "arguments": [

 {

 "offset": 0,

 "operator": "single",

 "source": "Tc",

 "type": "data"

 },

 {

 "type": "constant",

 "value": 2

 }

],

 "operator": "pow",

 "type": "operator"

 },

 "type": "operator"

 },

 "to": "saturation_pressure_butane",

 "type": "assignment"

 }

]

“feature_vector”:[

 “median2”,

 “saturation_pressure_butane”]

The response is the same as with the forecasting endpoint, giving us the UUID.

200 OK :

{

 "UUID": "4a6dba15-5b06-4565-896f-2bf3c885db2b"

}

The metadata can be retrieved from:

GET http://goat.ijs.si:6780/get_metadata/4a6dba15-5b06-4565-896f-2bf3c885db2b

{

 "UUID": "4a6dba15-5b06-4565-896f-2bf3c885db2b",

 "config": {},

 "metrics": {

 "RMSE": 78664.7641727221

 },

 "model_type": "CatBoostRegressor",

 "model_usage":

 "model = pickle.load(model.pickle)

result = model.predict(input_vector)

https://github.com/JozefStefanInstitute/factlog-data-

pipeline/tree/main/api/examples/new_custom_model_example.py",

 "status": "successful"

}

D4.4 KG-based analytics for process optimization

32

In the case of the custom model, the configuration we used to invoke the endpoint is stored in the

metadata. The configuration contains the feature vector, the feature commands, and any other

parameters we used in the request. The main difference between the models is the loading, which

here uses the pickle library. The example can be seen in model_usage. The metric used here is only

the RMSE.

 response =

requests.get(url=f"http://goat.ijs.si:6780/get_model/4a6dba15-5b06-4565-

896f-2bf3c885db2b")

 filename = response.headers['Content-

Disposition'].split("filename=")[1]

 with open(filename, 'wb') as f:

 f.write(response.content)

 with open(filename, 'rb') as f:

 model = pickle.load(f)

 feature_vector = [1153.09, 87.39]

 result = model.predict(feature_vector)

Giving us the result:

4977539.088928778

D4.4 KG-based analytics for process optimization

33

5 Conclusion

We have developed an ontology that refers to the Basic Formal Ontology as the upper ontology and
reuses concepts from well-known ontologies developed in the past to model concepts and processes
related to artificial intelligence. In addition, based on the ontology, we have developed a custom
JSON format to interface with the cognitive API services and a knowledge-based service that
provides endpoints to train machine learning models based on either a model specification or a
known use case (for which domain knowledge exists within the application to create the features
and train a baseline model).

The main impact we report for this deliverable are the generalization of the cognitive services we
have designed, which allows for greater scalability in terms of training models (models can be re-
trained based on a model or use case specification), and the service can be further enriched to
support more use cases and thus a larger number of baseline models. We anticipate that such
functionality will enable training of sophisticated models by people with less specialized knowledge
than required to create such a service, “democratizing” the use of machine learning in smart
factories.

D4.4 KG-based analytics for process optimization

34

References

[1] Courtot, Mélanie, et al. "MIREOT: the minimum information to reference an external ontology

term." ICBO (2009): 87.

[2] Cannataro, Mario, and Carmela Comito. "A data mining ontology for grid programming." Proc.

1st Int. Workshop on Semantics in Peer-to-Peer and Grid Computing. 2003.

[3] Panov, Pance, Sašo Džeroski, and Larisa Soldatova. "OntoDM: An ontology of data mining."

2008 IEEE International Conference on Data Mining Workshops. IEEE, 2008.

[4] Panov, Panče, Larisa Soldatova, and Sašo Džeroski. "Ontology of core data mining entities."

Data Mining and Knowledge Discovery 28.5 (2014): 1222-1265.

[5] Diamantini, Claudia, Domenico Potena, and Emanuele Storti. "Kddonto: An ontology for

discovery and composition of kdd algorithms." Third Generation Data Mining: Towards

Service-Oriented Knowledge Discovery (SoKD’09) (2009): 13-24.

[6] Smith, Barry, Anand Kumar, and Thomas Bittner. "Basic formal ontology for bioinformatics."

(2005).

