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Executive Summary 

The main goal of this deliverable is to boost the cognition process (i.e., the management of 
enhanced cognitive digital twins) with the factory knowledge, derived mainly in WP4, 
required for the internal reasoning processes. One of the main challenges will be to 
understand the role of process and domain knowledge in the cognition process formalized 
in T3.1, leading to a completely new view on the factory knowledge and consequently on 
the methods for processing and validating it. The main outcome is a set of interfaces for 
accessing that knowledge. In addition, feedback about the validity of knowledge will be sent 
as feedback to support the FACTLOG platform development. 

In this deliverable, ontology and knowledge graph models are first investigated. Then 
cognitive factory services and knowledge graph modelling are identified to provide all the 
functionalities of knowledge graph models. Then ontology based on the BFO is introduced. 
Based on the ontology, knowledge graph models are developed. Finally, the integration of 
knowledge graph models and FACTLOG platform is demonstrated including three 
approaches: 1) integration based on OWL models; 2) integration based on Neo4j; 3) 
integration based on HTTP. 
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1 Introduction  

1.1 Purpose and Scope 

This document refers to a technical report about ontology and knowledge definition in Task 
3.3 and providing a guidance for defining all the entities and relations in the context of five 
FACTLOG Pilots and technical partners about enhanced cognitive digital for factory. 
Knowledge Graph Model (KGM) denotes a generic ontology representation and description 
with all related product and equipment elements which is considered as a domain knowledge 
defined in this report. The enhanced cognitive twins are developed based on AI methods, 
algorithms, mechanisms, services and tools with knowledge graph models integrated into 
an overall modelling application.  

In each specialized FACTLOG use case, the enhanced cognitive digital twins are developed 
based on related products, methods, algorithms and mechanisms with the knowledge graph 
models which require a unified and high-level abstract ontology definition because of the 
domain specific knowledge across different pilots. In the whole FACTLOG platform, the 
knowledge graph models are used to describe the factory knowledge, the platform services 
and their interrelationships. KGM is used to interconnect and interoperate with external AI 
tools, Optimization tools, Analytics tools, data visualization tools, etc. These tools require to 
develop the data interfaces based on the developed ontology for importing and exporting 
knowledge graph models. According to specific cognition needs, the knowledge graph 
models can be developed to implement reasoning to support anomaly detection. 

The main content deals with the design and implementation of knowledge and development 
of knowledge graph models for reasoning. To summarize, main objectives of this report are: 

• Develop knowledge graph models based on a top-level ontology for cognition 
services for analytic and dynamic models in the factory scenarios across FACTLOG 
pilot; 

• Provide a reasoning approach for anomaly detection and data analysis for factory 
scenarios of FACTLOG. 

• An integration approach based on Neo4j is introduced to demonstrate how FACTLOG 
platform is integrated with knowledge graph models to support decision-making. 

 

1.2 Relation with other Deliverables 

D2.1 is the input of this deliverable for pilot information. 

D3.1 is the input of this deliverable for Enhanced Cognitive Twin definition. 

D4.2 is an important reference of this deliverable for ontology definition. 

D8.3 is the input of this deliverable for knowledge graph modelling specification. 

1.3 Structure of the Document 

Section 2 introduces the background of ontology, semantic modelling and knowledge graph 
modelling. Section 3 introduces the cognitive factory services and knowledge graph models. 
Section 4 introduces FACTLOG ontology based on BFO for knowledge graph modelling. 
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Section 5 introduces the knowledge graph models which are developed based on FACTLOG 
ontology. Section 6 introduces integration of knowledge graph models and cognition 
services in FACTLOG platform. Section 7 offers conclusions. 
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2 Ontology for knowledge definition about factory 

2.1 Ontology Engineering and Semantic Modelling 

2.1.1 Ontology Engineering 

Ontology engineering is the general term of methodologies and methods for building 
ontologies. Ontology engineering refers to “The set of activities that concern the ontology 
development and the ontology lifecycle, the methods and methodologies for building 
ontologies and the tool suites and languages that support them”. The results of ontology 
engineering provide domain knowledge representation to be reused efficiently and prevent 
waste of time and money which are usually caused by non-shared knowledge. It helps 
Information Technology (IT) to operate with interoperability and standardization. 

Ontology represents the nature of being, becoming, existence, and so on in the way of 
philosophy. One of the most well-known is: “ontology is an explicit, formal specification of a 
shared conceptualization of a domain of interest” [12]. 

Ontology represents the following ideas together [17]: 

▪ Semantic modelling can help defining the data and the relationships between 
entities. 

▪ An information model provides the ability to abstract different kind of data and 

provides an understanding of how the data elements are related. 

▪ A semantic model is a type of information model that supports the modelling of 

entities and their relationships. 

▪ The total set of entities in our semantic model comprises the taxonomy of classes 

we use in our model to represent the real world. 

 

2.1.2 Semantic Modelling 

The main objective of semantic modelling techniques is to define the meaning of data within 
the context of its correlation, and to model the domain world in the abstract level. The 
benefits of exploiting semantic data models for business applications are mainly as follows: 

▪ Avoiding misunderstanding: by providing a clear, accessible, agreed set of 

terms, relations as a trusted source and discussions, misunderstandings can easily 

be resolved. 

▪ Conduct reasoning: by being machine-understandable and through the usage of 

logic statements (rules), ontologies enable automatic reasoning and inference 

which leads to the automatic generation of new and implicit knowledge. 

▪ Leverage resources: by extending and relating an application ontology to external 

ontological resources, via manual or automatic mapping and merging processes, 

the need for repetition of entire design process for every application domain is 

eliminated. 

▪ Improve interoperability: semantic models can serve as a basis for schema 

matching to support systems’ interoperability in close environments where systems, 
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tools and data sources have no common recognition of data type and relationships. 

 

2.1.3 Basic Ontology Concepts 

Ontologies provide formal models of domain knowledge exploited in different ways. 
Therefore, ontology plays a significant role in many knowledge-intensive applications. 
Depending on corresponding languages, a number of different knowledge representation 
formalisms exist. 

Ontologies provide formal models of domain knowledge exploited in different ways. 
Therefore, ontology plays a significant role for many knowledge-intensive applications. 
Depending on corresponding languages, a number of different knowledge representation 
formalisms exist. However, they share a minimal set of components as follows: 

• Classes represent concepts, which are taken in a broad sense. For instance, in the 
Product Lifecycle domain, concepts are: Life Cycle phase, Product, Activity, 
Resources, Even, and so on. Classes in ontology are usually organized in 
taxonomies through which inheritance mechanisms can be applied. 

• Relations represent a type of association between concepts of the domain. They are 
formally defined as any subset of a product of n sets, that is: R ⊂ C1 x C2 x ... x Cn. 
Ontologies usually contain binary relations. The first argument is known as the 
domain of the relation, and the second argument is the range. 

• Formal axioms serve to model sentences that are always true. They are normally 
used to represent knowledge that cannot be formally defined by the other 
components. In addition, formal axioms are used to verify the consistency of the 
ontology itself or the consistency of the knowledge stored in a knowledge base. 
Formal axioms are very useful to infer new knowledge. 

For instance, Energy Efficiency at Buildings domain could be that it is not possible to build 
a public building without a fire door (based on legal issues). 

• Instances are used to represent elements or individuals in an ontology. 

As a Design Rationale (DR), ontology can be used as follows [6]: 

• Level 1: Used as a common vocabulary for communication among distributed agents. 

• Level 2: Used as a conceptual schema of a relational database. Structural information 
of concepts and relations among them is used. Conceptualization in a database is 
nothing other than conceptual schema. Data retrieval from a database is easily done 
when there is an agreement on its conceptual schema. 

• Level 3: Used as the backbone information for a user of a certain knowledge base. 
Levels higher than this plays role of the ontology, which has something to do with 
"content". 

• Level 4: Used for answering competence questions. 

• Level 5: Standardization 
o Standardization of terminology (at the same level of Level 1) 
o Standardization of meaning of concepts 
o Standardization of components of target objects (domain ontology). 
o Standardization of components of tasks (task ontology) 
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• Level 6: Used for transformation of databases considering the differences of the 
meaning of conceptual schema. This requires not only the structural transformation 
but also semantic transformation. 

• Level 7: Used for reusing knowledge of a knowledge base using DR information. 

• Level 8: Used for reorganizing a knowledge base based on DR information. 

2.2 Semantic Modelling Languages 

Several semantic modelling languages are developed to support ontology definition and 
semantic modelling.  

• XML-based Ontology Exchange Language: The US bioinformatics community 
designed XOL for the exchange of ontology definitions among a heterogeneous set 
of software systems in their domain. Researchers developed it after studying the 
representational needs of experts in bioinformatics. They selected Ontolingua (a Tool 
for Collaborative Ontology Construction) and OML as the basis for creating XOL, 
merging the high expressiveness of OKBC-Lite, a subset of the Open Knowledge 
Based Connectivity protocol, and the syntax of OML, based on XML. There are no 
tools that allow the development of ontologies using XOL. However, since XOL files 
use XML syntax, we can use an XML editor to author XOL files. 

• Simple HTML Ontology Extension: SHOE is a small extension to HTML which 
allows web page authors to annotate their web documents with machine-readable 
knowledge. SHOE makes real intelligent agent software on the web possible. HTML 
was never meant for computer consumption; its function is for displaying data for 
humans to read. The "knowledge" on a web page is in a human-readable language 
(usually English), laid out with tables and graphics and frames in ways that we as 
humans comprehend visually. Unfortunately, intelligent agents aren't human. Even 
with state-of-the-art natural language technology, getting a computer to read and 
understand web documents is very difficult. This makes it very difficult to create an 
intelligent agent that can wander the web on its own, reading and comprehending 
web pages as it goes. SHOE eliminates this problem by making it possible for web 
pages to include knowledge that intelligent agents can actually read. 

• Ontology Markup Language: OML, developed at the University of Washington, is 
partially based on SHOE. In fact, it was first considered an XML serialization of 
SHOE. Hence, OML and SHOE share many features. Four different levels of OML 
exist: OML Core is related to logical aspects of the language and is included by the 
rest of the layers; Simple OML maps directly to RDF(S); Abbreviated OML includes 
conceptual graphs features; and Standard OML is the most expressive version of 
OML. We selected Simple OML, because the higher layers don’t provide more 
components than the ones identified in our framework. These higher layers are tightly 
related to the representation of conceptual graphs. There are no other tools for 
authoring OML ontologies other than existing general-purpose XML edition tools. 

• Ontology Interchange Language: OIL, developed in the OntoKnowledge project 
(www.ontoknowledge.org/OIL), permits semantic interoperability between Web 
resources. Its syntax and semantics are based on existing proposals (OKBC, XOL, 
and RDF(S)), providing modelling primitives commonly used in frame-based 
approaches to ontological engineering (concepts, taxonomies of concepts, relations, 
and so on), and formal semantics and reasoning support found in description logic 
approaches (a subset of first order logic that maintains a high expressive power, 

http://www.ontoknowledge.org/OIL)
http://www.ontoknowledge.org/OIL)
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together with decidability and an efficient inference mechanism). OIL, built on top of 
RDF(S), has the following layers: Core OIL groups the OIL primitives that have a 
direct mapping to RDF(S) primitives; Standard OIL is the complete OIL model, using 
more primitives than the ones defined in RDF(S); Instance OIL adds instances of 
concepts and roles to the previous model; and Heavy OIL is the layer for future 
extensions of OIL. OILEd, Protégé2000, and WebODE can be used to author OIL 
ontologies. OIL’s syntax is not only expressed in XML but can also be presented in 
ASCII. We use ASCII for our examples. 

• DARPA Agent Markup Language+OIL: DAML+OIL has been developed by a joint 
committee from the US and the European Union (IST) in the context of DAML, a 
DARPA project for allowing semantic interoperability in XML. Hence, DAML+OIL 
shares the same objective as OIL. DAML+OIL is built on RDF(S). Its name implicitly 
suggests that there is a tight relationship with OIL. It replaces the initial specification, 
which was called DAML-ONT, and was also based on the OIL language. OILEd, 
OntoEdit, Protégé2000, and WebODE are tools that can author DAML+OIL 
ontologies. 

• OWL: OWL is the result of the work of the W3C Web Ontology Working Group. This 
language derived from DAML+OIL and, as the previous languages, is intended for 
publishing and sharing ontologies in the Web. OWL is built upon RDF(S), has a 
layered structure and is divided into three sublanguages: OWL Lite, OWL DL and 
OWL Full. OWL is grounded on Description Logics and its semantics are described in 
two different ways: as an extension of the RDF(S) model theory and as a direct model-
theoretic semantics of OWL. Both of them have the same semantic consequences 
on OWL ontologies. 

• OWL 2: OWL 2 is an extension and revision of OWL that adds new functionality with 
respect to OWL; some of the new features are syntactic sugar (e.g., disjoint union of 
classes) while others offer new expressivity. OWL 2 includes three different profiles 
(i.e., sublanguages) that offer important advantages in particular application 
scenarios, each trading off different aspects of OWL's expressive power in return for 
different computational and/or implementation benefits. These profiles are: 

• OWL 2 EL: It is particularly suitable for applications where very large ontologies are 
needed, and where expressive power can be traded for performance guarantees. 

• OWL 2 QL: It is particularly suitable for applications where relatively lightweight 
ontologies are used to organize large numbers of individuals and where it is useful or 
necessary to access the data directly via relational queries (e.g., SQL). 

• OWL 2 RL: It is particularly suitable for applications where relatively lightweight 
ontologies are used to organize large numbers of individuals and where it is useful or 
necessary to operate directly on data in the form of RDF triples. OWL 2 ontologies: 
The Direct Semantics that assigns meaning directly to ontology structures and the 
RDF- Based Semantics that assigns meaning directly to RDF graphs. 

• Resource Description Framework and RDF Schema: RDF, developed by the W3C 
for describing Web resources, allows the specification of the semantics of data based 
on XML in a standardized, interoperable manner. It also provides mechanisms to 
explicitly represent services, processes, and business models, while allowing 
recognition of nonexplicit information. The RDF data model is equivalent to the 
semantic networks formalism. It consists of three object types: 
✓ Resources are described by RDF expressions and are always named by URIs 

plus optional anchor IDs 

✓ Properties define specific aspects, characteristics, attributes, or relations used 
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to describe a resource 

✓ Statements assign a value for a property in a specific resource (this value 

might be another RDF statement) 

The RDF data model does not provide mechanisms for defining the relationships between 
properties (attributes) and resources—this is the role of RDFS. RDFS offers primitives for 
defining knowledge models that are closer to frame-based approaches. RDF(S) is widely 
used as a representation format in many tools and projects, such as Amaya, Protégé, 
Mozilla, SilRI, and so on. 

According to W3C, RDF model has advantages as follows: 

• The RDF model is made up of triples: as such, it can be efficiently implemented and 
stored; other models requiring variable-length fields would require a more cumbersome 
implementation 

• The RDF model is essentially the canonicalization of a (directed) graph and has all the 
advantages (and generality) of structuring information using graphs 

• The basic RDF model can be processed even in absence of detailed information (an 
"RDF schema") on the semantics: it already allows basic inferences to take place, 
since it can be logically seen as a fact basis 

• The RDF model has the important property of being modular 

The union of knowledge (directed graphs) is mapped into the union of the corresponding 
RDF structures. Since RDF is a standard model for data interchange and is a W3C 
recommendation designed to standardize the definition and use of metadata-descriptions of 
Web-based resources, it is well suited to representing data. As knowledge representation, 
when it comes to semantic interoperability, RDF has significant advantages: The object-
attribute structure provides natural semantic units because all objects are independent 
entities. A domain model—defining objects and relationships—can be represented naturally 
in RDF. To find mappings between two RDF descriptions, techniques from research in 
knowledge representation are directly applicable. Therefore, the Z-BRE4K ontology has 
been implemented in the RDF format. 

2.3 Knowledge Graph Modelling 

From several academic papers, we found different researchers and companies have 
proposed many different definitions. To synthesize a coherent definition that helps frame the 
discussion about KGs, the definitions in references ([8], [13], [5], [7], [14], [18], [2], [10], [4]) 
were reviewed. They had the following common features: 

1. A KG represents interrelationships. All of the definitions specify this feature but do so 
in different ways. 

2. A KG uses techniques to extract knowledge from one or more sources. The kinds of 
sources differ from one definition to another. 

3. The organization is a graph, although the precise meaning of "graph" varies from one 
definition to another. 

4. While a KG must have a schema, not all KG definitions mention it. Those that do 
mention it specify that the schema defines classes and relations. 

5. The KG supports various graph-computing, search, and query interfaces. The 
supported operations and performance will vary, and the performance will depend on 
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how trade-offs among scalability, performance, and maintainability are handled as well 
as on other technical issues. 

 
From these features it is apparent that a KG is not simply another way to represent facts. It 
involves a software architecture that includes active capabilities for extracting and 
processing the facts. Jans Aasman [1] characterized the operations of a KG as follows: 

• Generation: 
o Collection: Ingestion, web extraction, catalogue extraction, ontology, ... 
o Processing: Schema mapping, entity resolution, cleaning, ... 

• Storage 

• Applications: Querying, graph mining, recommendation, search, question 
answering, ... 

• Statistical and machine learning techniques are used for all of the above 

Accordingly, these lead to the following proposal for a definition of a KG: 

A KG is a representation of a set of statements in the form of a node- and edge-labelled 
directed multigraph allowing multiple, heterogeneous edges for the same nodes. A collection 
of definitional statements specifying the meaning of the knowledge graph's labels is called 
its schema. 

In common, different graph database can support knowledge graph modelling which 
enables to integrate with IoT platform, such as Neo4j [9]. 

2.4 Semantic Reasoning based on Knowledge Graph Models 

Based on knowledge graph models, semantic reasoning is the ability to infer new facts from 
existing knowledge graph data based on inference rules or ontologies. In simple terms, rules 
add new information to the existing knowledge graph models, adding context, knowledge, 
and valuable insights. The rules are declarative in nature that declare the desired logic of 
connections in the knowledge graph models and the process of inferring new facts happens 
either through pre-materialization, query rewriting or a combination of both. 

Reasoning enables to manage consistent among knowledge graph models and speed up 
the intelligent services by minimizing the amount of information processing that needs to 
happen outside your database’s reasoning engine, as well as the number of required 
operations. It also brings analysis closer to the knowledge graph models, meaning deeper 
insights can be gathered from a given knowledge graph model with far less computational 
effort. 

A semantic reasoning engine (otherwise known as a semantic reasoner, inference engine, 
or rules engine) is a piece of software designed to perform reasoning—to apply rules to a 
knowledge graph model and conduct semantic inference as we’ve described. The semantic 
reasoning tools includes, SQWRL engine [11], SWRL engineer [16], etc. 

2.5 Summary and Motivation 

In summary, knowledge graph models are always developed based on semantic modelling 
languages. When developing knowledge graph models, ontology is used to support 
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specification definition of different knowledge graph model elements. Through the ontology, 
different domain specific knowledge can be integrated into a unified framework. 
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3 Cognitive Factory Services and KGM 

In this section, cognitive factory twins based on knowledge graph models are introduced. 
Then the function of knowledge graph models in FACTLOG factory scenarios are 
demonstrated in Section 3.2. 

3.1 Cognitive Factory Twins based on Knowledge Graph Models 

 

Figure 1: Knowledge graph models and cognition services to FACTLOG factory [15] 

As shown in Figure 1, the interrelationships among FACTLOG factories and knowledge 
graph models are shown: 

1. FACTLOG factory provides data to cognition services. 
2. Ontology formalizes FACTLOG factory. 
3. Ontology is used to develop knowledge graph models.  
4. Knowledge graph models, algorithm and data are used to develop cognition services. 
5. The cognition services control FACTLOG factory. 

3.2 The functions of Knowledge Graph Models in FACTLOG Factory 
scenario 

The functions of knowledge graph models in the FACTLOG factory scenarios are listed:  

• Unified description of digital twins and information across FACTLOG platform 

• Anomaly detection for cognition 

• Visualization of the interrelationships of all the ontology entities and individuals 
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4 Ontology definition for KGM 

4.1 Guidance to KGM for cognition services of factory 

 

Figure 2: Scenario Overview -A: System of systems perspective; -B: Operational view. 

In order to understand how the knowledge graph models, support the formalism of 
FACTLOG factory, an example is demonstrated as follow: 

One scenario is proposed to develop a tutorial of knowledge graph modelling.  The scenario 
is about a shop-plant. In Figure 2-A, the system of systems view is introduced. A production 
plants (plant1) is located in site (Lausanne). The plant1 includes two production lines (line1 
and line2). Two workers (worker1 and worker2) work in line1. They are in Group1 which 
competence is OrganizationCompLevel1. The worker1 has senior competence and worker2 
has junior competence. Three workers (worker3, worker4 and worker5) work in line2.  They 
are in Group2 which competence is OrganizationCompLevel2. They have the same person 
competence: semi-senior. Machine1 and Machine2 are implemented in line1. Machine3 and 
Machine4 are implemented in line2. In line1, process stock(process1stock) is implemented. 
The process1stock has two input process stocks (material1 and material2) and two output 
process stocks (product1 and product2). The line1 has competences: PLCompetent1 and 
PLCompetent2 which produce product1 and product2. In line2, process 
stock(process2stock) is implemented. The process2stock has two input process stocks 
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(material1 and material2) and two output process stocks (product1 and product3). The line2 
has competences: PLCompetent1 and PLCompetent3 which produce product1 and 
product3. 

As shown in Figure 2-B, the operational view is illustrated. When the development process 
starts, order (order1) triggers the process1 and order (order2) triggers the process2. The 
process1 is monitored and controlled by the algorithm1 in software1. The algorithm1 
provides action1 to control machine1. The machine1 and machine2 generate data which 
provided to software1. The process2 is monitored and controlled by the algorithm2 in 
software2. The algorithm2 provides action2 to control machine2. The machine3 and 
machine4 generate data which provided to software2. 

4.1.1 Knowledge Graph Modelling 

A: Class

C: Object property

D: Data propertyB: Individuals  

Figure 3: Knowledge graph models -A: Class; -B: Object property; -C: Data property; -Individuals. 

Based on the scenario, knowledge graph model is developed in protégé. The class refers to 
meta-concepts used in the scenario, for example, production line. Then the individuals of 
production line class are defined to represent line1 and line2.Object properties are used to 
represent the relationships between classes. For example, product plant (class) contains 
product line (class). Then as shown in Figure 4, the relationship rules are defined with object 
properties and another class. When developing the KG models for the scenario, each 
individual is connected by object property. The data property is used to define attributes of 
each individual and class. 
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A: Class B: Individuals
 

Figure 4 Define relationship rules between classes 

4.1.2 Reasoning for the scenario 

4.1.2.1 Reasoning using SQWRL 

SQWRL (Semantic Query-Enhanced Web Rule Language; pronounced squirrel) is a SWRL-
based query language that provides SQL-like operators for extracting information from OWL 
ontologies, https://github.com/protegeproject/swrlapi/wiki/SQWRL. The SQWRL is used to 
reasoning the knowledge graph model in order to get the answer you want. In the scenario, 
when we finish the knowledge graph models, we want to know how many product lines 
operate production process. The SQWRL is defined as follow: 

production_line(?PL) ^ operate(?PL, ?IP) ^ Production_Process(?IP) -> 
sqwrl:select(?PL, ?IP) 

Then the reasoning is implemented as Figure 5. The results are obtained in protégé. 

A:SQWRL

B:Reasoning result
 

Figure 5: Reasoning results 

4.1.2.2 Query using SPARQL 

SPARQL contains capabilities for querying required and optional graph patterns along with 
their conjunctions and disjunctions. SPARQL also supports extensible value testing and 
constraining queries by source RDF graph. The results of SPARQL queries can be results 
sets or RDF graphs https://www.w3.org/TR/rdf-sparql-query/ . The SPARQL is also used to 

https://github.com/protegeproject/swrlapi/wiki/SQWRL
https://www.w3.org/TR/rdf-sparql-query/
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query the knowledge graph models built by protégé. The query is implemented in twinkle. If 
we want to know how many workers, we have in the knowledge graph models and what are 
their own capabilities, we make use of the SPARQL as follow: 

PREFIX owl: <http://www.w3.org/2002/07/owl#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

PREFIX sp: <http://purl.obolibrary.org/obo/FACTLOG.owl#> 

SELECT ?worker ?competency 

WHERE{ 

?worker <http://purl.obolibrary.org/obo/bfo.owl#belong_to> ?competency 

{ ?worker rdf:type sp:person} 

} 

 

Figure 6: Reasoning results 

4.1.2.3 Lessons learned from the Guidance 

The ontology models enable to provide a unified description of the entire FACTLOG factory. 
Through some reasoning approaches, the knowledge graph model can support decision-
makings for the FACTLOG services, such as identifying workers’ skill through query. 
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4.2 FACTLOG Ontology developed for KGM in FACTLOG 

4.2.1 Principles 

Entities in the FACTLOG semantic framework have been arranged based on the Basic 
Formal Ontology (BFO) which is a formal ontology framework developed by Barry Smith 
and his associates [3]. In BFO, there are two varieties which are continuants 
comprehending continuant entities such as three-dimensional enduring objects and 
occurrent comprehending processes conceived as extended through (or as spanning) 
time. To adopt BFO framework will provide availability to merge the other CT domain 
ontology structured by BFO. 

Originated from BFO, ontology design principles of FACTLOG are as follows: 

▪ use single nouns (except data) and avoid acronyms 

▪ ensure unicity of terms and relational expressions 

▪ distinguish the general from particular 

▪ provide all non-root terms with definitions 

▪ use essential features in defining terms and avoid circularity 

▪ start with the most general terms in the domain 

▪ use simpler terms than the term you are defining (to ensure intelligibility) 

▪ do not create terms for universals through logical combination 

▪ structure ontology around is_a hierarchy and ensure is_a completeness 

▪ single inheritance 

 

4.2.2 Methodology 

 

Figure 7: Ontology development workflow 

In order to design the unified ontology for developing knowledge graph models supporting 
cognitive capabilities, the one of the well- known systems thinking development methodology 
(D 8.3) through domain knowledge has been applied to define the domain knowledge 
including: (i) pilot information; (ii) process modelling; (iii) optimization; (iv) data analysis; 
(v) anomaly detection. IoF ontology, BFO ontology and IoF SE ontology are three main 
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reference ontology. By composing a top-level overview, abstract concepts form domain 
specific knowledge from FACTLOG pilots and technical views. After the extraction of 
entities from FACTLOG pilots, the list of classes was updated in a comparison with 
existing ontology such as IOF-SE ontology, and IOF ontology. And then, all the entities 
were rearranged in the BFO structure.  Finally, the SQWRL and SPARQL are used to 
support reasoning and query of the OWL models. 

All the ontology concepts are manly used for three aspects: 

1. Unified description of digital twin and information across the FACTLOG platform. 
2. Ontology reasoning for anomaly detection. 
3. Visualization of the interrelationships of all the ontology entities and individuals. 

4.2.3 Ontology Framework 

Faclog entities

Continuent
Occurrent

Process

Generally dependent continuant Independent continuant Specifically dependent continuant

Immaterial entity Material entity Quality Realizable entity

ObjectSite

Information Content Entity

Object aggregate

Domain

BFO and IoF is_a

is_a

Class Hierarchy
of Main Concepts

Disposition

Function
Temporal Region

Thing

Anomaly entity

Pilot is_a

Directive_information_entity

Optimization entity Pilot_parameter entityProcess_model entity Simulation_model entity

Artifact Person Artifact_aggregate OrganizationServiceProcess boundary
...

Spatiotemporal_region

Sensor Processing_stock

Machine EquipmentMachine_component

Department

BRC_unit Continental_unit

Piacenza_unit

TUPRAS_unit

JEMS_unit

Factlog_Continental_quality_entity
Factlog_JEMS_quality_entity

Factlog_Piacenza_quality_entity

Factlog_TUPRAS_quality_entity
Factlog_BRC_quality_entity

Factlog_continental_function_entity

BRC site Continental_siteTUPRAS_site

Site
...

...

Analog_Signals Digital_Signals

General_sensor_data

 

Figure 8: Ontology framework based on BFO 

As shown in Figure 8, the FACTLOG ontology is developed based on basic formal ontology. 
The red blocks refer to BFO and IoF concepts.  The purple blocks refer to domain concepts. 
The blue ones which are defined under BFO and domain concepts are used to define 
FACTLOG concepts. The whole entire FACTLOG entities include occurrent and 
continuent entity. 

• A continuant is an entity that persists, endures, or continues to exist through time 
while maintaining its identity.  

• An occurrent is an entity that unfolds itself in time or it is the instantaneous boundary 
of such an entity (for example a beginning or an ending) or it is a temporal or 
spatiotemporal region which such an entity occupies_temporal_region or 
occupies_spatiotemporal_region.  

Under the occurrent entity, several concepts are defined: 

• Process: an occurrent that has temporal proper parts and for some time t, p s-
depends_on some material entity at t.  

• Process_boundary: a temporal part of a process & p has no proper temporal parts.  

• Service: Service is delivered when the service implements the system function. 

• Spatiotemporal_region: an occurrent entity that is part of spacetime. 

• Temporal_region: an occurrent entity that is part of time as defined relative to some 
reference frame. 
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Under the continuant entity, several concepts are defined: 

• generically_dependent_continuant is a continuant that generally depends on one 
or more other entities. 

• independent_continuant, a continuant which is such that there is no c and not such 
that b s-depends_on c at t. 

• specifically_dependent_continuant, a continuant & there is some independent 
continuant c which is not a spatial region and which is such that b s-depends_on c at 
every time t during the course of b’s existence 

Under generically_dependent_continuant entity, several concepts are defined: 

• Information_content_entity, a generically dependent continuant that is about 
something. 

o Process_model_entity, a virtual concept used to define a process model. 
o Optimization_entity , a virtual concept used to define an optimization concept. 
o Simulation_model_entity, a virtual concept used to define simulation model 

concepts. 
o Pilot_parameter_concept, a virtual entity to define FACTLOG pilot 

parameters. 
▪ General sensor data, sensor data used for all the FACTLOG pilots 

o Directive_information_entity , a plan specification that describes the inputs 
and output of mathematical functions as well as the workflow of execution for 
achieving a predefined objective. Algorithms are realized usually by means of 
implementation as computer programs for execution by automata. 

o Anomaly_entity, a virtual entity to support anomaly detection. 
o Data_analysis_entity, a virtual entity used for data analysis. 

• Specifically_dependent_continuant, is a continuant & there is some independent 
continuant c which is not a spatial region and which is such that b s-depends_on c at 
every time t during the course of b’s existence 

o Quality, a specifically dependent continuant that, in contrast to roles and 
dispositions, does not require any further process in order to be realized. 

▪ FACTLOG_BRC_quality_entity, quality used in the BRC pilot. 
▪ FACTLOG_Continental_quality_entity, quality used in the CONT 

pilot. 
▪ FACTLOG_JEMS_quality_entity, quality used in the JEMS pilot. 
▪ FACTLOG_Piacenza_quality_entity, quality used in the PIA pilot. 
▪ FACTLOG_TUPRAS_quality_entity, quality used in the TUPRAS 

pilot. 
o realizable_entity, a specifically dependent continuant that exists essentially 

or permanently in some independent continuant which is not a spatial region 
and is of a type instance of which are realized in processes of a correlated 
type. 

▪ Disposition, a realizable entity & b’s bearer is some material entity & 
b is such that if it ceases to exist, then its bearer is physically changed, 
& b’s realization occurs when and because this bearer is in some 
special physical circumstances, & this realization occurs in virtue of the 
bearer’s physical make-up. 

• Function, a disposition that exists in virtue of the bearer’s 
physical make-up and this physical make-up is something the 
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bearer possesses because it came into being, either through 
evolution (in the case of natural biological entities) or through 
intentional design (in the case of artifacts), in order to realize 
processes of a certain sort. 

o FACTLOG_continental_function_entity, functions 
used in CONT pilot. 

▪ Role, a realizable entity & b exists because there is some single bearer 
that is in some special physical, social, or institutional set of 
circumstances in which this bearer does not have to be& b is not such 
that, if it ceases to exist, then the physical make-up of the bearer is 
thereby changed. 

• Independent_continuant, a continuant which is such that there is no c and no t such 
that b s-depends_on c at t. 

o immaterial_entity, which are divided into two subgroups: boundaries and 
sites, which bound, or are demarcated in relation, to material entities, and 
which can thus change location, shape and size and as their material hosts 
move or change shape or size (for example: your nasal passage; the hold of 
a ship; the boundary of Wales. 

▪ Site, three-dimensional immaterial entity that is (partially or wholly) 
bounded by a material entity or it is a three-dimensional immaterial part 
thereof. 

• BRC_site, site used in BRC. 

• Continental_site, site used in CONT. 

• TUPRAS_site, site used in TUPRAS. 
o material_entity, which can preserve their identity even while gaining and 

losing material parts. Continuants are contrasted with occurrents, which unfold 
themselves in successive temporal parts or phases. 

▪ Object, a material entity which manifests causal unity of one or other 
of the types CUn listed above & is of a type (a material universal) 
instance of which are maximal relative to this criterion of causal unity. 

• Artifact, an Object that was designed by some Agent to realize a 
certain Function. 

o Sensor, a device that produces an output signal for the 
purpose of sensing of a physical phenomenon. 

o Processing stock, is an artifact in an industrial site 
corresponds to any material in the process of producing 
or manufacturing finished product. 

o Machine component, compositions for constructing 
machines. 

o Machine, a physical system using power to apply forces 
and control movement to perform an action.  

o Equipment, the set of physical resources serving to 
equip a person or thing implementing used in an 
operation or activity 

• Person, an object that is a human being. 
▪ Object_aggregate, an object aggregates if and only if there is a 

mutually exhaustive and pairwise disjoint partition of a into objects. 

• Artifact_aggregate, a collection of artifacts that designedor 
aranged by some Agent to realize a certain Function. 
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o BRC_unit, a company group generally equivalent in size 
and character to implement BRC services. 

o Continental_unit, a company group generally equivalent 
in size and character to implement CONT services. 

o JEMS_unit, a company group generally equivalent in 
size and character to implement JEMS services. 

o Piacenza_unit, a company group generally equivalent in 
size and character to implement PIA services. 

o TUPRAS_unit, a company group generally equivalent in 
size and character to implement TUPRAS services. 

• Organization, an object aggregate that corresponds to social 
institutions such as companies, societies etc. that does 
something. 

o Department, an organizational unit in FACTLOG. 

4.3 Ontology for each Pilot and Technical Partner 

Based on the ontology framework, ontology for each pilot and technical partners is designed 
in each deliverable as shown in Table 1. 

Table 1 – Mapping between ontology concepts and other deliverables 

Ontology concepts Deliverable Description 

Ontology for 
Directive_information_entity 

Deliverable 4.2 Ontology which describes the general 
information concepts in FACTLOG. 

Ontology for Pilot 
Description 

Deliverable 4.2 Ontology which describes the pilot 
concepts in FACTLOG. 

Ontology for Optimization Deliverable 4.2 Ontology which describes the 
optimization concepts in FACTLOG. 

Ontology for Processing 
Modeling 

Deliverable 4.2 Ontology which describes the process 
model concepts in FACTLOG. 

Ontology for Data Analysis Deliverable 4.4 Ontology which describes the concepts 
of data analysis in FACTLOG. 

Ontology for Simulation 
Model 

Deliverable 4.2 Ontology which describes the concepts 
of simulation models in FACTLOG. 
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4.4 Ontology for Anomaly Detection 

The ontology concepts are defined to support anomaly detection in FACTLOG pilot. 

 

Figure 9: Ontology for describing anomaly detection processes 

As shown in Figure 9, several concepts are defined to describe the anomaly detection 
process. 

1. A service is defined as what is delivered when the service implements the system 
function. 

2. A service failure, often abbreviated here as failure, is an event that occurs when the 
delivered service deviates from correct service.  

3. An error is the deviation that at least one (or more) external state of the system 
deviates from the correct service state, since a service is a sequence of the system’s 
external states. 

4. A fault is an adjudged or hypothesized cause of an error. 
5. An observation of a fault is fault status. 
6. Sensor data refers to the data directly generated from machine or sensor. 
7. Reference data refers to the data from simulation models for decision-makings. 

 

Figure 10: Ontology classes for describing anomaly detection processes 

As shown in Figure 10, ontology classes are defined based on the Figure 9. 



D3.3 Factory Knowledge for Cognition v1.1 

 

 

29 

5 Knowledge Graph Modelling based on FACTLOG Ontology 

 

Figure 11: Knowledge graph models based on developed ontology 

As shown in Figure 11, knowledge graph models are developed based on the ontology in 
Section 4. Details are shown in Deliverable 4.2. 

5.1 Knowledge Graph Modelling for BRC 

In the BRC pilot, four main concerns are first considered when knowledge graph models are 
developed to formalize the BRC pilot: 1) pilot description; 2) PN model formalism; 3) 
optimization formalism; 4) anomaly detection (introduced in Section 6.4.1.2).  

5.1.1 Pilot description 

Class Object property Individual
 

Figure 12: Ontology class， object property and individuals for BRC pilot description 

As shown in Figure 12, BRC process entities, BRC services, BRC sites, BRC pilot 
parameter, BRC machine, BRC unit and BRC input process stock are the main ontology 
concepts defined in the knowledge graph models. General specific object properties are 
defined in order to support all the pilot description. Individuals are defined to describe an 
example of the BRC scenario. 
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5.1.2 PN model formalism 

Real machines in pilots

Components in Process models

This means the M1 component in process 

model represent Machine 1 in the BRC pilot. 

Process model description Connection in Process models

Class Object property Individual
 

Figure 13: Ontology class， object property and individuals for simulation in BRC pilot description 

As shown in Figure 14，classes of petri net model entities and object properties of petri net 

model connections are defined to describe the petri net model used in the BRC pilot. The 
PN node entities are used to represent the “model compositions” in the petri net model. The 
PN connection entities are used to represent the model connections in the petri net model. 
PN_connectingFrom and PN_connectingTo are used to connect the PN connections and 
PN nodes. Through this way, the entire PN model is described. 

5.1.3 Optimization formalism 

Class Object property Data property Individual
 

Figure 14: Ontology class, object property, data property and individuals for optimization for BRC pilot  

As shown in Figure 14, optimization classes, object properties and data properties are 
defined to represent optimization scenario using individuals. In Figure 15, the individuals are 
used to represent the optimization input data structure. The BRC optimization input has a 
machine named “2KRBMINI” who has a machine id as 2-KRBMINI. 
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Figure 15: Individuals for describing the optimization scenario for BRC pilot  

5.2 Knowledge Graph Modelling for PIA 

In the PIA pilot, three concerns are first considered when knowledge graph models are 
developed to formalize the PIA pilot: 1) pilot description; 2) optimization formalism; 3) 
anomaly detection (introduced in Section 6.4.1.3).  

5.2.1 Pilot description 

Class Object property Individual
 

Figure 16: Ontology class, object property and individuals for PIA pilot description 

As shown in Figure 16, PIA process entities, PIA services, PIA pilot parameter, PIA machine, 
PIA unit, PIA input process stock and PIA output process stock are the main ontology 
concepts defined in the knowledge graph models. General specific object properties are 
defined in order to support all the pilot description. Individuals are defined to describe an 
example of the PIA scenario. 
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5.2.2 Optimization formalism 

Object property Data property IndividualClass
 

Figure 17: Ontology class， object property, data property and individuals for optimization for PIA pilot 

As shown in Figure 17, optimization classes, object properties and data properties are 
defined to represent optimization scenario using individuals. In Figure 18, the individuals are 
used to represent the optimization input data structure. The PIA optimization output has an 
order1 named “order1” who has a processing time and its value is 1991.79. 

 

Figure 18: Individuals for describing the optimization scenario for PIA pilot 
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5.3 Knowledge Graph Modelling for JEMS 

In the JEMS pilot1, two concerns are first considered when knowledge graph models are 
developed to formalize the pilot: 1) pilot description; 2) anomaly detection (introduced in 
Section Errore. L'origine riferimento non è stata trovata.).  

5.3.1 Pilot description 

Class Object property Individual
 

Figure 19: Ontology class， object property, data property and individuals for optimization for JEMS pilot 

As shown in Figure 19, JEMS process entities, services, pilot parameter, sensor, JEMS unit, 
quality, digital signal, unit, input process stock and output process stock are the main 
ontology concepts defined in the knowledge graph models. General specific object 
properties are defined in order to support all the pilot description. Individuals are defined to 
describe an example of the JEMS scenario. 

5.4 Knowledge Graph Modelling for TUPRAS 

In the TUPRAS pilot, four main concerns are first considered when knowledge graph models 
are developed to formalize the TUPRAS pilot: 1) pilot description; 2) PM model formalism; 
3) optimization formalism; 4) Data analysis formalism. 

 

1 JEMS pilot did not meet its objectives, especially with regards to the integration of the FACTLOG system to 
its plant since there is not yet an operative plant in Slovenia.   



D3.3 Factory Knowledge for Cognition v1.1 

 

 

34 

5.4.1 Pilot description 

Class Object property Individual
 

Figure 20: Ontology class, object property, data property and individuals for pilot description in TUPRAS pilot 

As shown in Figure 20, TUPRAS process entities, TUPRAS services, TUPRAS pilot 
parameter, TUPRAS unit, TUPRAS quality, TUPRAS digital signal, TUPRAS site, TUPRAS 
input process stock and TUPRAS output process stock are the main ontology concepts 
defined in the knowledge graph models. General specific object properties are defined in 
order to support all the pilot description. Individuals are defined to describe an example of 
the TUPRAS scenario. 

5.4.2 PM model formalism 

 

Figure 21: Individuals for process model description for TUPRAS pilot 

Using the ontology in Section 5.4.2, the Figure 21 shows the individuals which are used to 
represent model structure for TUPRAS. For example, the individuals of PM_links are used 
to represent the connections among PM_nodes. The individuals of PM_nodes are used to 
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represent each model composition in the model. The model composition is defined to 
represent the real equipment in the TUPRAS pilot. 

5.4.3 Optimization formalism 

Class Object property Data property
 

Figure 22: Ontology class, object property, and data property for optimization for TUPRAS pilot 

As shown in Figure 23, optimization classes, object properties and data properties are 
defined to represent optimization scenario using individuals. In Figure 28, the individuals are 
used to represent the optimization output data structure. The TUPRAS optimization output 
has a solKPIs, solution scenario, outputKPIs and etc. 

 

Figure 23: Individuals for optimization in TUPRAS pilot 
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5.4.4 Data analysis formalism 

Object propertyClass Data property
 

Figure 24: Ontology class, object property, and data property for data analysis in TUPRAS pilot 

As shown in Figure 24, optimization classes, object properties and data properties are 
defined to represent data analysis scenario using individuals. In Figure 25, the individuals 
are used to represent the data analysis scenario. The TUPRAS data analysis scenario has 
a uuid which is mapping to the unit “crude distillation unit”. 

 

Figure 25: Individuals for data analysis in TUPRAS pilot 

5.5 Knowledge Graph Modelling for CONT 

In the CONT pilot, three main concerns are first considered when knowledge graph models 
are developed to formalize the CONT pilot: 1) pilot description; 2) optimization formalism; 3) 
anomaly detection (introduced in Section 6.4.1). 
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5.5.1 Pilot description 

Class IndividualObject property
 

Figure 26: Ontology class, object property, data property and individuals for CONT pilot 

As shown in Figure 26, CONT process entities, CONT services, CONT pilot parameter, 
CONT site, CONT machine, and CONT function are the main ontology concepts defined in 
the knowledge graph models. General specific object properties are defined in order to 
support all the pilot description. Individuals are defined to describe an example of the CONT 
scenario. 

5.5.2 Optimization formalism 

Class IndividualObject property Data property
 

Figure 27: Ontology class, object property, data property and individuals for optimization for CONT pilot 

As shown in Figure 27, optimization classes, object properties and data properties are 
defined to represent optimization scenario using individuals. In Figure 28, the individuals are 
used to represent the optimization input data structure. The CONT optimization input has a 
route named “prod-and-maint-sched” whose value is “prod-and-maint-sched”. 
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Figure 28: Individuals for describing the optimization scenario for CONT pilot 
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6 Integration of KGM and Cognition Services in the FACTLOG 
platform 

In this chapter, two approaches are used to integrate the designed knowledge graph models 
into cognition services in the FACTLOG platform. 

6.1 Integration based on OWL models 

 

Figure 29: Workflow for visualizing knowledge graph model 

As shown in Figure 29, a React and java project is developed based on Jena Lib in order to 
visualize a knowledge graph model which is built for the FACTLOG project. Totally, there 
are three steps to realize the visualization: 

1. OWL models are developed in Protégé based on the developed ontology. 
2. Through the java project we proposed, which details are shown in ANNEX III. 
3. The OWL files are shown in the web. 

6.2 Integration based on Neo4j 

 

Figure 30: OWL model transformed into Neo4j 
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As shown in Figure 30, ontology models which are developed based on BFO framework is 
generated into Neo4j knowledge graph models through turtle. The cypher query language 
is used to support reasoning of knowledge graph models. 

6.3 Integration based on HTTP API 

As shown in Figure 14, we developed a Python application that leverages an OWL ontology 
developed based on the BFO framework to instantiate a knowledge graph. An HTTP API is offered 
to the external services to enable the training of machine learning models based either on domain 
knowledge regarding a specific use case, or regarding specifications for building such a model. 
When detailed specifications are provided to build a certain model, a parser is used to interpret how 
the features must be built and build them. In all cases, the machine learning model is trained and 
persisted into the filesystem, so that it can be later accessed along with metadata of interest. Model 
training is performed asynchronously. All information regarding the characteristics of the model, their 
instantiation and performance are recorded in the knowledge graph. 

 

 
Figure 31. Diagram displaying the components' interaction at the KG-based analytics for process optimization 

architecture. 
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6.4 Cognition services for FACTLOG Factories 

6.4.1 Cognition services based on OWL 

6.4.1.1 Anomaly detection for CONT Pilot 

Based on ontology for anomaly detection, a knowledge graph model is defined to represent 
the rational of anomaly detection for the CONT pilot. 

Table 2 – Anomaly detection scenario for CONT pilot 

Anomaly 

Sensor 
Data 

Possible 
Error 

detection 
(Error) 

Required 
additional 

data inputs 

（Reference 

data） 

Drift Measure（Fault 

status) extral （ontology for 

natural data） 

Possible Causes 
(Fault) 

Possible 
outcomes 
(Failure) 

Service Machine Machine 
type 

- Some 
impurities 

in the 
machine 

- The screw height is out of 
limit 

Screw is too 
high  

Machine has to 
stop 

Implement 
screwing 

VW20 Flipping & 

Screwing 

 

Figure 32: Anomaly scenario for CONT pilot 

As shown in Figure 32, based on Table 2, an anomaly scenario is defined. The knowledge graph model is built 

based on the given data and anomaly ontology. The relationships between failure and two other concepts 
including service and machine are not defined in the knowledge graph. Thus, a reasoning is executed based on 

the developed knowledge graph models in order to capture a machine or service has a failure. 

 

Figure 33: Knowledge graph models for CONT pilot 

As shown in Figure 33, knowledge graph models are defined to define the anomaly scenario. 
Through SQWRL rule, a reasoning is implemented: 
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FACTLOG_BFO:Flipping_Screwing_machine(?mac) ^ 
FACTLOG_BFO:provide(?mac, ?servi) ^ FACTLOG_BFO:Implement_screwing(?servi) ^ 
FACTLOG_BFO:ServiceHasFaultStatus(?servi, ?fsta) ^ FACTLOG_BFO:fault_status(?fsta) 
^ FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) ^ FACTLOG_BFO:fault(?fau) ^ 
FACTLOG_BFO:ErrorLedByFault(?err, ?fau) ^ FACTLOG_BFO:error(?err) ^ 
FACTLOG_BFO:FailureLedByError(?imser, ?fal) ^ FACTLOG_BFO:failure(?fail) -> 
sqwrl:select(?mac, ?servi, ?fail) 

 

Figure 34: Reasoning result for CONT pilot 

Finally, a reasoning result is obtained. From the result, we can understand VW20 machine 
has a failure: Machine has to stop. 

6.4.1.2 Anomaly detection for BRC Pilot 

Based on the ontology for anomaly detection, a knowledge graph model is defined to 
represent the rational of anomaly detection for the BRC pilot. 

Table 3 – Anomaly detection scenario for BRC pilot 

Sensor Data Possible Error 
detection (Error) 

Required 
additional data 
inputs 

（ Reference 

data） 

Drift Measure

（ Fault status) 

extral （ontology 
for natural 

data） 

Possible Causes (Fault) Possible outcomes 
(Failure) 

Service 

Digital Signals 

Hydraulic 
Cooler ON 
time 

Hydraulic system 
going over 
temperature if 
cooler is on for 
extended periods 

Machine in 
automatic and 
safety circuit OK. 

The time the 
cooler is on when 
the machine is 
running is varying 
outside normal 
operational 
parameters so 
system is less 
efficient 

1) Hydraulic pump wear 
 2) Hydraulic valves not 
operating correctly. 
 3) Cooler is inefficient. 
 4) faulty temperature 
detector  

Hydraulic Oil 
temperature will 
go outside safe 
limits and stop 
machine 

Cooling for 
Hydraulic 
system is 
running 
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Figure 35: Anomaly scenario for BRC pilot 

As shown in Figure 35, based on Table 3, an anomaly scenario is defined. The knowledge 
graph model is built based on the given data and anomaly ontology. The relationships 
between failure and two other concepts including service are not defined in the knowledge 
graph. Thus, a reasoning is executed based on the developed knowledge graph models in 
order to capture a service has a failure. 

 

Figure 36: Knowledge graph models for BRC pilot 

As shown in Figure 36, knowledge graph models are defined to define the anomaly scenario. 
Through SQWRL rule, a reasoning is implemented: 
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FACTLOG_BFO:Hydraulic_system_cooling_service(?servi) ^ 
FACTLOG_BFO:ServiceHasFaultStatus(?servi, ?fsta) ^ 
FACTLOG_BFO:Hydraulic_Cooler_ON_time(?senData) ^ 
FACTLOG_BFO:Generate_FaultStatus(?senData, ?fsta) ^ 
FACTLOG_BFO:fault_status(?fsta) ^ FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) ^ 
FACTLOG_BFO:fault(?fau) ^ FACTLOG_BFO:ErrorLedByFault(?err, ?fau) ^ 
FACTLOG_BFO:error(?err) ^ FACTLOG_BFO:FailureLedByError(?imser, ?fal) ^ 
FACTLOG_BFO:failure(?fail) -> sqwrl:select(?servi, ?fail) 

Finally, a reasoning result is obtained. From the result, we can understand 
BRC_Cooling_for_Hydraulic_system_is_running service has a failure: 
BRC_Hydraulic_Oil_temperature_will_go_outside_safe_limits_and_stop_machine. 

 

Figure 37: Reasoning result for BRC pilot 

6.4.1.3 Anomaly detection for JEMS pilot 

Based on the ontology for anomaly detection, a knowledge graph model is defined to 
represent the rationale of anomaly detection for the JEMS pilot2. 

Table 4 – Anomaly detection scenario for JEMS pilot 

Sensor Data 

 

Possible Error 
detection 
(Error) 

Required 
additional data 
inputs 

(Reference 
data) 

Drift Measure（Fault status) 
extra (ontology for natural 

data） 

Possible Causes 
(Fault) 

Possible 
outcom
es 
(Failure) 

Service Machine 

• Ingested 
material 
flow speed 

• Mixing 
power 

• Temperature 

• Pressure 

• Turbine flow 

• Pump speed 

clogged pipe Machine in 
automatic and 
safety circuit 
OK. 

• Ingested material flow 
speed: decreasing 
ingestion speed 

• Mixing power: increasing 
machine power required to 
mix the mixture 

• Temperature: temperature 
above 160C or 300C in 
phases 2 and 3 

• Pressure: increased 
pressure in phases 2 and 3 

• Turbine flow: decreased 
turbine flow per minute 

• Pump speed: decreased 
pump speed when 
pumping from B100 to 
turbine 

The fault status 
signals highly 
increased 
density/viscosit
y of the mixture 
preventing 
normal 
operation  

 

The 
machine 
stops 
working 
/ must 
be 
stopped
. 

The 
machine 
provides 
the waste 
processing. 

Waste 
to fuel 
plant 

As shown in Figure 38, based on Table 4, an anomaly scenario is defined. The knowledge 
graph model is built based on the given data and anomaly ontology. The relationships 
between failure and two other concepts including service are not defined in the knowledge 
graph. Thus, a reasoning is executed based on the developed knowledge graph models in 
order to capture a machine has a failure. 

 

2 JEMS pilot did not meet its objectives, especially with regards to the integration of the FACTLOG system to 
its plant since there is not yet an operative plant in Slovenia.   
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Figure 38: Anomaly scenario for JEMS pilot 

 

Figure 39: Knowledge graph models for JEMS pilot 

As shown in Figure 39, knowledge graph models are defined to define the anomaly scenario. 
Through SQWRL rule, a reasoning is implemented: 

FACTLOG_BFO:Waste_to_fuel_plant (?mac) ^ FACTLOG_BFO:provide(?mac, ?servi) ^ 
FACTLOG_BFO:waste_processing_service(?servi) ^ 
FACTLOG_BFO:ServiceHasFaultStatus(?servi, ?fsta) ^ FACTLOG_BFO:fault_status(?fsta) 
^ FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) ^ FACTLOG_BFO:fault(?fau) ^ 
FACTLOG_BFO:ErrorLedByFault(?err, ?fau) ^ FACTLOG_BFO:error(?err) ^ 
FACTLOG_BFO:FailureLedByError(?imser, ?fal) ^ FACTLOG_BFO:failure(?fail) -> 
sqwrl:select(?mac, ?servi, ?fail) 

Finally, a reasoning result is obtained. From the result, we can understand the machine 
JEMS_Waste_to_fuel_plant provides a service 
(JEMS_The_machine_provides_the_waste_processing) has a failure: 
JEMS_The_machine_must_be_stopped. 
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Figure 40: Reasoning result for JEMS pilot 

6.4.1.4 Anomaly detection for PIA pilot 

Based on the ontology for anomaly detection, a knowledge graph model is defined to 
represent the rational of anomaly detection for the PIA pilot. 

Table 5 – Anomaly detection scenario for PIA pilot 

Sensor Data 

 

Possible Error 
detection 
(Error) 

Required additional 
data inputs 

（Reference data） 

Drift Measure （ Fault 

status) extral （ontology 

for natural data） 

Possible Causes (Fault) Possible outcomes (Failure) 

Mechanical 
lock 

 

The error is 
detected by 
the PLC. Then 
the yarn 
brokerage 
data is sent to 
MES  

Failure cause tyoe 
the i sinputed 
manually by the 
human after the 
visual inspection of 
the stopepd loom 

The error is detected by 
the PLC. Then the yarn 
brokerage data is sent to 
MES  

Digital 0 (stopped) The error is detected by the 
PLC. Then the yarn 
brokerage data is sent to 
MES  

 

 

Figure 41: Anomaly scenario for PIA pilot 

As shown in Figure 41, based on Table 5, an anomaly scenario is defined. The knowledge graph model is built 

based on the given data and anomaly ontology. The relationships between failure and sensor data are not 
defined in the knowledge graph. Thus, a reasoning is executed based on the developed knowledge graph 

models in order to capture a sensor data has a failure. 
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Figure 42: Knowledge graph models for PIA pilot 

As shown in Figure 42, knowledge graph models are defined to define the anomaly scenario. 
Through SQWRL rule, a reasoning is implemented: 

FACTLOG_BFO:Mechanical_lock (?sendata) ^ FACTLOG_BFO:Generate_FaultStatus 
(?sendata, ?fsta) ^ Reference_data_for_anomaly_analysis (?refedata) ^ 
FACTLOG_BFO:ReferenceDataRefer (?refedata, ?fsta) ^ 
FACTLOG_BFO:fault_status(?fsta) ^ FACTLOG_BFO:DetectByFaultStatus(?fau, ?fsta) ^ 
FACTLOG_BFO:fault(?fau) ^ FACTLOG_BFO:ErrorLedByFault(?err, ?fau) ^ 
FACTLOG_BFO:error(?err) ^ FACTLOG_BFO:FailureLedByError(?imser, ?fal) ^ 
FACTLOG_BFO:failure(?fail) -> sqwrl:select(?sendata,?fail) 

 

Figure 43: Reasoning result for PIA pilot 

Finally, a reasoning result is obtained. From the result, we can understand the sensor data 
(Mechanical_lock) has a failure: “When the loom is stopped, a red light turns on the loom. It 
means the loom is topped.”. 
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6.4.2 Cognition services based on Knowledge Graph Models in Graphical Database 

6.4.2.1 Anomaly detection for CONT Pilot 

 

Figure 44: Reasoning result for CONT pilot 

As shown in Figure 44, through the integration of KGM and cognition services, the OWL 
model (Section 6.4.1.1) for anomaly detection is used to generate Neo4j knowledge graph 
model. Through the reasoning in Neo4j by using cypher, the VW20 machine has fault status 
The screw height is out of limit. 

6.4.2.2 Sensor values forecasting for JEMS pilot 

While the cognitive services exposed for sensor values forecasting work based on induction, 
leveraging machine learning models to issue predictions based on patterns learned from 
past data, such models are created based on domain knowledge encoded in knowledge 
graphs and specific endpoints described and presented in D4.4. In Figure 45 we show a 
high-level architecture diagram based on the one introduced in Section 6.3, and relating it 
to our knowledge graph and external services consuming it. 

We leveraged the owlready2 library to create an in-memory knowledge graph based on a 
custom ontology we developed that represents the relevant entities required to create the 
machine learning model (see Figure 46). The ontology had 31 classes, extended from the 
BFO upper ontology, and leveraged concepts from four related ontologies: OntoDM, IAO, 
DAMON, DMOP. Individuals created in the process were persisted, and could be later 
exported in the OWL format when required, and later imported and merged along with the 
ontology to the aforementioned Neo4j instance (see Figure 47).  
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Figure 45. Diagram displaying how the KG-based analytics for process optimization service is used by the use 

cases we worked for. 

 
Figure 46. Graph visualization of the ontology we created. 
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Figure 47. Individuals created in the ontology-based knowledge base based on data on multiple calls to the 

HTTP API. 

The service described above enables to use API calls to retrain a model based on particular 
data (e.g., new data available) and later deployed to replace the stale ones. The architecture 
supporting the deployment of such machine learning models was described in detail in D3.2, 
along with the results obtained for the different use cases. Below we reproduce the results 
obtained for particular motor power, pressure, and temperature sensors (Figures 48-50).  

 

Figure 48. Motor power sensor 
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Figure 49. Pressure sensor 

 

Figure 50. Temperature sensor 

Ontology-defined ML model and analytical pipeline enables to apply the initial cognitive 
services designed in a more generalized approach. While the initial configuration demanded 
predefined models and feature vector configurations, the upgraded services with knowledge 
graph semantics enable configuration using API abstraction. This key difference enables 
the integrator to self-define (automatically configure) the internal analytical data structures, 
to match the use case requirements. A step towards generalizable services use. 
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7 Conclusion 

This report demonstrates basic background of ontology, ontology engineering and 
knowledge graph modelling for factory cognition first. Then ontology for the entire FACTLOG 
project is introduced including pilot description, optimization, process modelling, etc. 
Moreover, knowledge graph models which are developed for each pilot are introduced. 
Finally, integration of knowledge graph models and FACTLOG platform is reported including 
cognition services based on OWL and Neo4j. In summary, we have three important outputs 
from this deliverable: 

• Top level ontology, such as BFO and IOF ontology, is used to construct an ontology 
framework to support the standardization of our ontology development. 

• Five pilots and four technical partners including data analysis, process models, 
optimization and anomaly detection are defined based on the developed ontology 
framework. 

• The developed knowledge graph models are integrated with FACTLOG platform. 
Thus, all the FACTLOG components can access the knowledge graph models to 
capture related data. 

Based on the lessons learned from the FACTLOG project, through the top-level ontology, 
the knowledge graph models have a good scalability. All the pilot concepts and domain 
concepts of technical partners can be integrated under a unified ontology framework.  
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Appendix I – Integrating KGM based on OWL 

We have made a project for the visualization for BFO. In this project, two resource classes 
(Entity and Line) were constructed for the parse of BFO model. The OWL file was read by 
the Jena ontology API. The objects of Entity Class and Line Class stored the topological 
relation of BFO model. The open source JavaScript visualization library ECHART was used 
for visualization in this project. Due to the large number of properties of BFO, we only show 
the properties needed in this particular OWL file in this demo. The details of the project are 
shown as follow.  

HOW TO RUN THE DEMO IN ECLIPSE 

(1) Import project 

In Eclipse, select the File -> Import. Then the dialog box is shown as Figure 51. Select the 
Existing Maven Project and choose the demo directory and the maven project is import in 
the Eclipse. It may take some time to load the libraries.  

 

Figure 51: Eclipse project 

(2) modify the file path 

Modify the OWL file path in line 33 and line 1828 in owlRead.java. Change file path to your 
own file path of the OWL file. 

 

Figure 52: Change the path for loading OWL files. 
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(3) run the application 

Run the springboot project as Java Application, shown as Figure 53. 

 

Figure 53: Compile the whole project 

(4) Result Browser 

Open a browser and type in the url localhost:8080. Then the result is shown as follow which 
is localhost:8080. 

 

Figure 54: Visualize the OWL information 
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Appendix II – Knowledge Graph Modeling tools 

1. Protégé  

Protégé is supported by a strong community of academic, government, and corporate 
users, who use Protégé to build knowledge-based solutions in areas as diverse as 
biomedicine, e-commerce, and organizational modeling https://protege.stanford.edu/ 
In our project, we make use of it to model knowledge graph models using OWL. 

Unzip the Protege-5.5.0-win and open Protege.exe. Then start your knowledge graph 
modeling journey. 

2. Twinkle 

Twinkle is a simple GUI interface that wraps the ARQ SPARQL query engine. The tool 
should be useful both for people wanting to learn the SPARQL query language, as well 
as those doing Semantic Web development http://www.ldodds.com/projects/twinkle/. 
In this project, we make use of it to implement SPARQL query. 

Unzip the twinkle-2.0-src and open twinkle.jar. Then start your query journey. 

3. Neo4j 

Neo4j is the only enterprise-strength graph database that combines native graph 
storage, advanced security, scalable speed-optimized architecture, and ACID 
compliance to ensure predictability and integrity of relationship-based queries. In 
FACTLOG, it is used to integrate knowledge graph models with FACTLOG platform 
https://neo4j.com/ . 

 

 

 

https://protege.stanford.edu/
http://jena.hpl.hp.com/ARQ/
http://www.w3.org/TR/rdf-sparql-query/
http://www.ldodds.com/projects/twinkle/
https://neo4j.com/

