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Executive Summary 

This document presents the analytics platform developed in the FACTLOG project for use 
in the process industry. The platform analyses the data from the manufacturing systems and 
produces insights and predictions which inform the other components. This includes 
predicting future states of systems from past sensor readings and machine settings 
information; computing the most likely values of missing readings, specialised models of key 
infrastructure assets from the pilots such as distillation columns; and identifying and 
analysing unusual situations in complex multi-variate datasets. 

The methodology section (Section 2) introduces the main concepts on which the platform 
tools are based. The stream forecasting problem is framed, where future values of 
timeseries is predicted from past observations and possibly contextual data. The approach 
based on Artificial Neural Networks is introduced and extended with the capability to impute 
missing values in the timeseries in a pre-processing layer. A specialised approach for 
modelling distillation columns is presented as they are a common asset in two of the pilots. 
Finally, methodology for detecting and analysing unusual situations for the cognitions 
process is described. 

Implementation details are given in Section 3. The focus is on the description of the API 
structure of the Batch Learning Forecasting component. The description includes building 
forecasting models and data imputation as well as details regarding deployment of multiple 
instances and attaching the models to a messaging queue (i.e. a Kafka stream). A similar 
technical description is given for the distillation columns model. 

Finally, demonstration scenarios are presented in Section 4. These include example tool 
deployments from the Tupras, JEMS and Continental pilots with their input data, model 
setup, evaluation setup, and results. Though these deployments are still in active 
development, the results achieved show promise. 
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1 Introduction 

1.1 Purpose and Scope 

This deliverable accompanies the release of the FACTLOG analytics platform and details 
the tools included in the platform. Analytics act as the eyes and ears of the FACTLOG 
cognitive digital twin, with its tools detecting anomalies in the data and raising alerts when 
unusual situations arise. The tools are built using a wide array of machine learning 
methodology used to clean, analyse and process the data from manufacturing systems into 
actionable alerts and insights. Through those the other components, such as the 
optimisation and process modelling services, can be invoked to address the anomalies and 
return the system into a desired state. 

The document explains the theoretical background for the analytics methods as well as the 
technical implementation details and the resulting API structure. The use of the methods 
and tools is demonstrated through pilot scenarios where the platform has already been 
tested. These are demo deployments and are not yet ready for full production operation but 
already show the impact the analytics can have. Future work will improve upon these initial 
results. 

1.2 Relation with other Deliverables 

The most related other deliverable to this one is D2.1, Analytics System Requirements and 
Design Specification, where the requirements for the analytics platform were formulated and 
the platform architecture was specified.  

In future, the platform will be extended with additional capabilities and integrated with other 
components, most of which will be covered in Deliverable D3.2, Data Analytics as a 
Cognitive Service, and Deliverable D4.4, KG-based Analytics for Process Optimization. 

The tools listed in this deliverable will be, to some extent, used in all the pilots and therefore 
also have some relation to all the deliverables describing the final deployments.  

1.3 Structure of the Document 

After the document introduction in Section 1, the theoretical background of the methods 
used in the analytics platform are explained in Section 2, with each subsection covering one 
of the main methods. Section 3 then explains the implementation details and the API 
structure of the forecasting component as well as the model specialised for distillation 
columns. Finally, demonstration scenarios for use of the analytics platform tools from a 
selection of pilots (Tupras, JEMS and Continental) is detailed in Section 4. 
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2 Methodology 

This section introduces the methodological details of the analytics tools in the FACTLOG 
analytics platform. 

2.1 Stream Forecasting 

The idea of performing forecasting on a stream of data is that we are trying to make 
predictions based on a continuous flow of temporally sequential data. Models that make 
predictions based on such data must consider enough input from the past to make good 
predictions for some time window into the future. The model that performed best in our tests 
is an artificial neural network that can be trained to take as input all sensor readings from a 
desired time window in the past and predict all sensor readings for a given time in the future. 
Such a model can only work if we already have a sufficient learning set of data from the past 
and will not work at the very beginning of the data stream. 

There is a possibility of concept drift, i.e., an unforeseen change in system dynamics over 
time, which can lead to less accurate predictions. In such cases, it would be good if the 
model could detect this and update itself. One possibility for such a model would be to use 
online machine learning models. This type of model is typically used when the initial data is 
unknown or too large to be processed by a batch model such as the feedforward artificial 
neural network mentioned earlier. We did not choose to use such a model because our 
experiments have shown it is unnecessary and because such models commonly sacrifice a 
portion of performance for their capability to learn online. Instead, the model can simply be 
re-trained after a period of time with the most recent data. 

2.2 Imputation 

In both the Tupras and the JEMS use-case the data contains missing values. The most 
basic method to solve this issue is to fill all missing values of each feature with its mean or 
median value. In Python’s scikit-learn library this method is called SimpleImputer. A more 
advanced method from the scikit-learn library is IterativeImputer, which models each feature 
as a function of others in a round-robin fashion. More precisely, it learns a regressor for each 
feature where input data are the other features. Although IterativeImputer performs better 
than SimpleImputer, it is slow which means that it is not suitable for real-time data streams. 

We implemented a method described in the paper “Processing of missing data by neural 
networks” [1] which we will call GMM Layer. It is a modification of the first layer of a 
feedforward neural network. Instead of assigning exact values to missing values in the data, 
missing values are modelled with a probability distribution. A mixture of Gaussians (GMM) 
is used to model all data points. A data point is represented as a conditional probability 
distribution of missing features given known values. The first layer of a feedforward neural 
network is modified so that it gets a (possibly degenerate) mixture of Gaussians as an input 
and returns expected activation of neurons in that layer (as shown in Figure 1). The 
remaining layers are not modified. All parameters of the mixture of Gaussians are trained 
together with the neural network. 

https://arxiv.org/abs/1805.07405
https://arxiv.org/abs/1805.07405
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Figure 1: The GMM layer. 

Since the method is a modified first layer of the artificial neural network, it can be included 
in a neural network that makes predictions directly. Alternatively, it can be used as an 
autoencoder that does only imputation. Autoencoder is a feedforward neural network, which 
consists of two parts, encoder, and decoder. Encoder transforms input data into data points 
in fewer dimensions, whereas decoder reconstructs the original input. Autoencoder is 
trained to produce the output as close to input data as possible. Therefore, its output is 
imputed values that can then be used by any method. 

The method adds a new hyperparameter, the number of Gaussians which has to be carefully 
chosen. Too small values might mean the layer cannot model the data. On the other hand, 
too high values may result in a high number of model parameters which increases learning 
time. Even though it needs time to learn, the method is suitable for real-time stream setting, 
because it can make quick predictions on new data. 

2.3 Modelling Distillation Columns 

Crude oil is sourced to petroleum refineries from different provenances. Crude oil 
characteristics vary from source to source. Thus, different configurations are required 
through the oil refinery pipeline to ensure the quality standards are met. One of such 
processes is the distillation that treats the inlet to create the Liquefied Petroleum Gas (LPG). 
The final mixture such a product usually contains 48% propane, 50% butane, and up to 2% 
pentane. Among the processes applied to LPG to remove impurities we find the 
debutanization, which removes pentanes. To ensure the final mixture meets the 
specification standards, laboratory analysis is performed on samples taken in various stages 
of the purification process. Such analyses are performed a few days a week and can take 
several hours to complete. This fact favours scenarios where off-specs situations can spread 
over time before being detected and adequate measures taken. It is thus important to 
provide means towards early pentanes excess detection. A possible solution is the use of 
machine learning models to forecast pentane content or off-specification events based on 
real-time streamed sensor data. 
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When modelling the debutanizer columns, we took into account debutanizer unit diagrams 
on which details regarding sensors were provided. In particular, we gained insights 
regarding their position, type of sensor, and sensor reading values at a particular point in 
time. While the debutanizer columns differed regarding their design, we identified two pairs 
of temperature and pressure sensors located at the top of the debutanizer unit, close to the 
exit and before the condensation unit. Not all data regarding these sensors was available to 
us, and thus we limited our models to the input of two sensors: a pressure and temperature 
sensor, located at two separated points of the distillation column. We overcome the lack of 
multiple sensor inputs with careful featurisation and the results so far indicate this is 
sufficient for an operational model. While the sensor readings inform changes in the process, 
relationships between pressure and temperature at both points are governed by physical 
principles and laws. Additional insights can be obtained given such principles and laws, and 
data obtained from the diagrams informing sensor readings for all sensors at a specific point 
in time.  

Multiple features were created based on physical and chemical principles and laws related 
to the distillation process. In particular, we considered the Ideal Gas law equation, combined 
gas law equation, the Clausius-Clapeyron relation (to understand the relation between 
temperature and pressure at two different points), the Antoine's equation (to compute the 
expected saturation pressure of an approximate LPG mixture), and Raoult’s law and Molar 
weight equation (to hint on the LPG mixture composition). A full explanation of how these 
first-principle laws are used in computing the features and the references to papers 
explaining the physics background can be found in an upcoming paper available as a 
preprint [6]. 

We created two models: a regression model to predict pentane content, and a classification 
model to predict whether the pentane content was above allowed levels. The regression 
model was a Voting Regressor1 that learned from two Catboost2 models with different 
optimization objectives: a first model optimizes against the root mean square error (RMSE), 
penalizing large errors, while the second one optimizes against mean absolute error (MAE) 
to achieve best median performance. Outputs from both models are weighted by the voting 
regressor, to create the final forecast. The classification model, on the other side, was a 
Catboost classifier with a focal loss, which guides the model's learning process focusing on 
such instances that are harder to learn, to achieve superior results. Full details are described 
in an upcoming paper currently available as pre-print [6]. 

2.4 Unusuality Detection 

As already described in deliverable D1.2 [3], variation detection is one of the main 
processing steps in the realization of the cognition process.  

There are mainly two types of variations in multivariate time-series; one type is abnormal 
observation values or unusual subsequences within an individual variable, and the other 
type is unexpected changes of relationships among multiple variables. The second one is 
very important for describing/understanding the behaviour of a system (and cognition). We 
consider these variations as unusualities, or unusual system behaviour, as illustrated in 

                                            

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html  
2 https://catboost.ai/  

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html
https://catboost.ai/
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Figure 2. These are situations where the cognition should be activated since in a general 
case, an unusual behaviour must be further processed in the cognition process in order to 
know how to react on. 

 

Figure 2: Unusuality in complex signals. 

2.4.1 Basic Approach 
In this section we present the approach for unusuality detection based on Neural Networks. 

An Autoencoder is a type of Neural Networks used to learn efficient data coding in an 
unsupervised manner. The aim of an Autoencoder is to learn a representation (encoding) 
for a set of data, by training the Neural Network to ignore signal noise. Along with the 
reduction side, a reconstructing side is learnt, where the autoencoder tries to generate from 
the reduced encoding a representation as close as possible to its original input. Said 
characteristics make Autoencoders applicable to dimensionality reduction, information 
retrieval, anomaly detection, image processing, machine translation, etc.  

Autoencoders consist of three parts – encoder, used to transform input data to 
a corresponding code; decoder, used to transform code to its corresponding input; code, 
functioning as a gate between encoder and decoder parts (see Figure 3).  
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Figure 3: An Autoencoder architecture. 

This idea for the approach is based on the working principle of Autoencoders and the fact 
that Neural Networks fail to properly learn representation of under-balanced data [7]. 

In essence, if there is significantly lower number of instances of particular class (data type) 
in comparison to other classes, a Neural Network will learn its characteristics and 
representation poorly, which will result in wrong classifications. In the context of 
Autoencoder Neural Networks, this means that the Autoencoder will fail to properly learn 
how to encode and decode (reconstruct) its input. 

This means that if we use an entire dataset and do not remove anomalous instances, the 
Autoencoder should automatically learn the representation of usual data and later 
reconstruct it well, because under-balanced anomalous data should not impact training 
greatly. On the other hand, anomalous data will not be learned properly and will result in 
greater reconstruction errors. 

The above stated would work under the assumption that the process from which data 
originated is stable and that there is significantly lower number of unusual data compared to 
the usual. This stability could be checked with Stability Index method3. If the process is 
stable, we can assume there will be few unusual data points and vice versa. 

Another way we can check whether the process is stable is to use one of methods for 

anomaly detection. If a large percentage (above 15%) of data is anomalous, then we would 

not recommend using this method. It can indicate that the process is very unstable and we 

cannot be certain of proposed method’s usefulness. 

2.4.2 Validation Approach 
As we do not have any information which data points (i.e., training instances) are unusual 
prior to the training of neural networks, we do not have a proper way of validating our model. 

Therefore, we came up with several “semi-validation” methods: 

                                            

3 https://www.listendata.com/2015/05/population-stability-index.html  

https://www.listendata.com/2015/05/population-stability-index.html
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1. Comparing the results of our model to the results of outlier detection algorithms. We 

do not expect a great matching level of outputs of these algorithms and our model, 

because they function differently. However, we expect that there would be a certain 

matching level, as outliers fall into the category of something unusual; 

2. Manual validation – we would visualize the data set and the results of our model and 

perform visual inspection, if that is possible. Usually, there are a lot of features in the 

dataset, so manually performing multivariate validation to such extent is nearly 

impossible, but some conclusions may be drawn out with this method; 

3. Compare multiple models of the same architecture trained on different training and 

validation parts of the same data set and see whether their results match, and to what 

extent. If the results match, we can assume, and with fair certainty, that our models 

perform well. Otherwise, we can assume that there are issues, either with the dataset 

or with the model, which should be further inspected. 

2.4.3 Threshold 
Since we use our model to reconstruct instances, how well the reconstruction was performed 
is inferred from comparison of the actual and reconstructed instances. If they differ greatly, 
we assume that the instance is unusual, and vice-versa. This raises the question of where 
to draw the line between usual and unusual – i.e., how to set up a threshold based on which 
some instance is classified as unusual, and make it broadly applicable, as well? 

Our approach uses several thresholds. In its essence, this method calculates the standard 
deviation of the reconstruction errors, and any instance with error that is located within X or 
more standard deviations from the errors mean is considered unusual. In many disciplines 
if something is located within 3, or even 2, standard deviations from the mean it is considered 
an outlier. Therefore, we decided to use both of these thresholds, and to add one in between, 
as well. 

This way, we ended up with 3 “unusuality zones”. In essence, we can look at instances 
located within the first zone as potentially unusual (that may need further inspection), while 
the ones in the last zone as extremely rare, and thus very unusual (from loose to strict 
classification). 

Since reconstruction errors can follow several different distributions (other than normal), we 
cannot approximate the percentage of the data that we classify as unusual, as it can vary 
greatly depending on the data set (see 68–95–99.7 rule4). Therefore, we decided to define 
percentage zones; i.e., 10%, 5% and 1% of greatest errors will be used to define the 
respective thresholds. 

2.4.4 Feature Selection/Reduction 
The datasets can have a considerable number of features. This number can vary 
significantly from case to case. As a consequence, this can make implementation of general 
unusuality detection method with neural networks very difficult. Additionally, it makes visual 
inspection/manual validation impossible. 

                                            

4 https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule  

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
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Therefore, we are considering performing feature selection/reduction5 in order to reduce the 
dimensionality and complexity of the problem that needs to be solved. 

2.4.5 Our Approach – Ensemble Learning Supported Unusuality Detection 
This approach is an extension of the 3rd numbering in Validation approach section. It implies 
joint usage of multiple models in order to increase confidence in the final model/algorithm. 

In statistics and machine learning, ensemble methods use multiple learning algorithms to 
obtain better predictive performance than could be obtained from any of the constituent 
learning algorithms alone6.We assume that this would be especially useful for our method, 
as we have no prior knowledge about the data sets that this method might be used for. So, 
it would be helpful to cover and use entire historical data that we get with multiple models 
and implement voting or an average model. 

According to a review of the field, we singled out three ensemble learning methods that, can 
improve basic approach: 

1. Bootstrap aggregating (Bagging) – Using bootstrap sampling7, create n samples with 

m instances and train n models with these samples. Validation is performed on the 

instances that were left out of the sample. Aggregation is performed either as 

averaging or voting; 

2. K-fold aggregating – Using k-fold sampling8, create and train k models. Aggregation 

is performed either as averaging or voting; 

3. Boosting – Run initial training with entire training dataset. Then, based on 

reconstruction errors from validation dataset calculate threshold using proposed 

method. Use calculated threshold to separate instances with small reconstruction 

errors in training dataset. Use said instances to further train the model, i.e., to boost 

it, in order to be able to better differentiate between usual and unusual instances. 

                                            

5 https://en.wikipedia.org/wiki/Feature_selection  
6 https://en.wikipedia.org/wiki/Ensemble_learning 
7 https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/  
8 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html  

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Ensemble_learning
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
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3 Implementation 

This section presents the implementation details of the FACTLOG analytics platform. Note 
that all the tools follow the loosely coupled architecture presented in the specification in  
deliverable D2.1 [4] and can integrate with the other components through the project 
messaging queue and orchestration services. 

3.1 Batch Learning Forecasting Component 

The component enables using external predictive models from PyTorch9 and Scikit Learn10 
library (for example, models such as the Random Forest Regressor11) implementation in a 
streaming scenario. Fitting, saving, loading and live prediction are enabled. Live predictions 
work via Kafka streams in such a way that that feature vectors are read from a Kafka stream 
and predictions are written to a Kafka12 stream. In FACTLOG a neural network model was 
added enabling prediction of multiple streams using a single model. 

The layout of the neural network used in the component is shown in Figure 4. The structure 
is a typical feedforward network. An additional hidden layer can be added that can impute 
missing data by replacing typical neuron's response in by its expected value using a 
Gaussian mixture model (GMM) as presented in Section 2.2.  

 

Figure 4: Structure of the neural network used in the component 

3.1.1 Architecture 
Separate models are trained for each individual horizon (for how much time in the future do 
we want to make predictions). If a different model than the neural network is used, a separate 
model needs to be trained for each sensor. These models should be trained first with the 

                                            

9 https://pytorch.org  
10 https://scikit-learn.org  
11 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html  
12 https://kafka.apache.org  

https://pytorch.org/
https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://kafka.apache.org/
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previously available data and can be updated periodically with a certain number of the latest 
measurements. An overview of this component architecture setup is shown in Figure 5. 

 

Figure 5: Batch learning forecasting component architecture 

3.1.2 API Specification 
The forecasting library is open-source and is freely available on GitHub13.The predictive 
model is designed in a decentralized fashion, meaning that several instances (submodels) 
will be created and used for each specific sensor and horizon (#submodels = #sensors * 
#horizons). Such a decentralized architecture enables parallelization. 

Usage: 

python main.py [-h] [-c CONFIG] [-f] [-s] [-l] [-p] 

Optional parameters: 

Configuration file: 

Configuration file specifies the Kafka server address, which algorithm to use, prediction 
horizons and sensors. Configuration files are stored in src/config/. 

                                            

13 https://github.com/JozefStefanInstitute/forecasting  

Short Long Description 

-h --help show help 

-c CONFIG --config CONFIG path to config file (example: config.json) 

-f --fit learning the model from dataset (in /data/fused) 

-s --save save model to file 

-l --load load model from file 

-p --predict start live predictions (via Kafka) 

-w --watchdog start watchdog pinging 

https://github.com/JozefStefanInstitute/forecasting
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General Parameters: 

                                            

14 https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases  

Name Type Default Description 

prediction_horizons list(integer)  List of prediction horizons (in units 
specified in time_offset) for which 
the model will be trained to predict 
for. 

time_offset string H String alias14 to define the data 
time offsets. The aliases used in 
training and topic names are 
lowercase for backwards 
compatibility. 

sensors list(string)  List of sensors for which this 
specific instance will train the 
models and will be making 
predictions. 

bootstrap_servers string  

or list(string) 

 String (or list of host[:port] strings) 
that the consumer should contact 
to bootstrap initial cluster 
metadata. 

algorithm string torch String as either a scikit-learn 
model constructor with 
initialization parameters or a string 
torch to train using a pre-defined 
neural network using PyTorch with 
architecture: [torch.nn.Linear, 
torch.nn.ReLU, torch.nn.Linear], 

evaluation_period integer 512 Define time period (in defined time 
offset that is hours by default) for 
which the model will be evaluated 
during live predictions (evaluations 
metrics added to output record). 

evaluation_split_point float 0.8 Define training and testing splitting 
point in the dataset, for model 
evaluation during learning phase 
(fit takes twice as long time). 

retrain_period integer None The number of received samples 
after which the model will be re-
trained. This is an optional 
parameter. If it is not specified no 
re-training will be done. 

samples_for_retrain integer None The number of samples that will 
be used for re-training. If 
retrain_period is not specified this 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
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PyTorch parameters: 

GMM layer parameters: 

                                            

15 https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html  
16 https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html  

parameter will be ignored. This is 
an optional parameter. If it is not 
specified (and retrain_period is) 
the re-train will be done on all 
samples received since the 
component was started. 

watchdog_path string None Watchdog path. 

watchdog_interval integer 60 Delay in seconds between each 
Watchdog ping. 

watchdog_url string localhost Watchdog url. 

watchdog_port integer 3001 Watchdog port. 

 

Name Type Default Description 

learning_rate float 4E-5 Learning rate for the torch model. 

batch_size integer 64 Size of training batches for torch model. 

training_rounds integer 100 Training rounds for torch model. 

num_workers integer 1 Number of workers for torch model. 

Name Type Default Description 

gmm_layer boolean False If True, the GMM layer is added to the model. 

initial_imputer string simple Options are simple or iterative which uses either 
sklearn SimpleImputer15 or IterativeImputer16. 

max_iter integer 15 If the iterative imputer is chosen, this argument 
defines the maximum number of iterations for it. 

n_gmm integer 5 Number of components of GaussianMixture. If 
n_gmm is set to -1, then all values between 
min_n_gmm and max_n_gmm are checked and the 
one with the best BIC score is chosen. 

min_n_gmm integer 1 Minimum number of components for GMM if search is 
enabled. 

max_n_gmm integer 10 Maximum number of components for GMM if search 
is enabled. 

gmm_seed integer None Random state seed for GMM. 

verbose boolean False If set to True, the progress and results of n_gmm 
parameter search is displayed. 

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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Example of config file: 

3.1.3 Running multiple instances: 
The forecasting instance is loosely coupled to the system via Kafka streaming API, therefore 
it can be started as multiple processes (simple parallelization). For this purpose, we can use 
start_cluster.sh script with the same input parameters as main.py. Cluster is defined in a 
separate config file cluster.json. The script runs several instances of main.py in a tmux 
session (named modeling_cluster), each under a different window. 

Usage: 

bash start_cluster.sh [-f] [-s] [-l] [-p] 

Configuration file: 

Specify which sensors should be processed by a specific instance in a separate line. 

Example of cluster configuration file: 

Alternatively, process managers like PM2 or pman would be a better fit for the task than tmux. 

3.1.4 Model training and naming 
• Training data: all the training files should be stored in a subfolder called 

/data/fused. Data should be stored as json objects per line (e.g. {"timestamp": 

1459926000, "ftr_vector": [1, 2, 3]}). Separate file for each sensor and 
prediction horizon. Files should be named the same as input Kafka topics, that is 
{sensor}_{horizon}{time_offset.lower()} (e.g. sensor1_3h.json).The target 
sensor is the first element of ftr_vector. 
 
If we want to train a model that uses data from the last 60 minutes, we should make 
sure that the first reading is the target sensor at the specified timestamp and all other 

{ 
    "bootstrap_servers": "127.0.0.1:9092", 
    "algorithm": 
"sklearn.ensemble.RandomForestRegressor(n_estimators=100, n_jobs=16)", 
    "evaluation_period": 72, 
    "evaluation_split_point": 0.8, 
    "prediction_horizons": [1, 2, 3], 
    "sensors": ["test", "test2"], 
    "retrain_period": 100, 
    "samples_for_retrain": 5000 
} 

["N1", "N2"] 
["N3", "N4"] 
["N5", "N6"] 
["N7", "N8"] 
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values are all sensor readings for every minute up to 60 minutes in the past. When 
we make predictions later, we also need to provide a vector with such a structure to 
the component. 

• Re-training data: all the re-training data (if re-training is specified) will be stored in a 
subfolder called /data/retrain_data in the same form as training data. Separate files 
will be made for each sensor and prediction horizon. The names of the files will be in 
the following form: {sensor}_{horizon}{time_offset.lower()}_retrain.json (eg. 
sensor1_3h_retrain.json). 

• Models: all the models are stored in a subfolder called /models. Each sensor and 
horizon has its own model (with the exception of the neural net model, which covers 
multiple sensors. The name of the models is composed of sensor name and 
prediction horizon, model_{sensor}_{horizon}{time_offset.lower()} (e.g. 
model_sensor1_3h). 

3.1.5 Kafka specifications 

• Input Kafka topic: The names of input Kafka topics on which the prototype is 
listening for live data should be in the same format as training data file names, that 
is features_{sensor}_{horizon}{time_offset.lower()}. 

• Output Kafka topic: Predictions are sent on different topics based on a sensor 
names, that is {sensor} (e.g. sensor1). 

• Input data structure: JSON file with the following structure. The feature vector 
specifies the composition of the data row. 

• Output data structure: JSON file with following structure 

3.2 Modelling Distillation Columns 

To implement the models forecasting pentanes content at the end of the LPG debutanization 
process we used the scikit-learn (sklearn) and Catboost17 [5] libraries. In the deployment, 
the models consume real-time sensor data streams published to a Kafka topic. Each Kafka 
message contains information regarding the sensor ID, and based on metadata, it is known 

                                            

17 https://catboost.ai/  

{ 
    "ftr_vector":  array (a feature vector) of values, 
    "timestamp": timestamp as strings in the Unix timestamp format 
} 

{ 
    "stampm":  timestamp as strings in the Unix timestamp format, 
    "value":  prediction, 
    "sensor_id": target sensor, 
    "horizon": target horizon, 
    "predictability": sklearn r2 score 
} 

https://catboost.ai/
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to which debutanizer unit it corresponds. When a new sensor reading arrives, a forecast is 
made and published with metadata regarding the latest timestamp of the sensor reading, 
and the debutanizer unit to which the forecast corresponds. 

The models were developed with widely used open source libraries given the flexibility and 
quality of implementation they provide for particular machine learning models. These 
libraries are widely used in the industry, enhancing the trust regarding their implementation 
in light of the final product. We did not implement feature creation with the library developed 
by JSI (described above) due to domain-specific requirements. 

In Figure 6 we depict the models' integration. Sensor readings are obtained from the 
debutanizer column and streamed to a specific Kafka topic, with metadata regarding the 
timestamp of the reading, the particular sensor ID, and value. On the deployment instance, 
those values are fed to the model to produce a forecast. A lookup is performed to retrieve 
meaningful metadata and enrich the message before publishing it to the forecasts' Kafka 
topic.  

 

Figure 6: Schematic diagram of the debutanizer column, its sensors, and their integration towards the 
forecasting model and the end users. 
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4 Scenarios 

This Section presents scenarios from the FACTLOG pilots demonstrating the use of 
analytics tools. Note that these are demo cases and do not represent final production 
versions. Details on the pilots themselves can be found in FACTLOG deliverable D1.1 [2]. 

4.1 Tupras 

4.1.1 Predicting Unit State 
The data on which we trained and evaluated the models came from Crude Distillation Unit 
2 in the Tupras pipeline. The data had any duplicated time readings removed and missing 
values were imputed using the sklearn iterative imputer18. The generated dataset was split 
into the first 80%, which was used to train the model, and the last 20%, which was used to 
evaluate performance. The models we created had different number of past values used as 
the input range and predicted for different prediction horizons in the future. 

The input value in the table indicates for how many minutes in the past the data was given 
to the model. Data was collected in minute intervals, so the value 60 means that all sensor 
readings for every minute in the last hour were used as input. The prediction horizon 
indicates for how many minutes in the future all sensor readings are predicted. 

The metrics displayed are MAE (Mean Absolute Error) and MSE (Mean Square Error). 

Table 1: Model prediction accuracy for different input ranges and different horizons. 

Results shown in Table 1 are as can be expected – the best accuracy is achieved by models 
predicting for the near future and giving the model more information by increasing input 
range also increases the prediction accuracy. The impact of both factors is illustrated in  

                                            

18 https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html  

Input range [min] 
Prediction 

horizon[min] MAE MSE 

5 1 3.703 179.67 

20 1 4.891 204.54 

5 15 6.684 399.55 

20 15 9.105 571.04 

5 60 8.246 552.97 

20 60 9.676 594.82 

60 60 9.844 638.30 

https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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Figure 7: Predictions using the past 60 minutes as input and predicting 60 minutes in the future for some of the 

sensors in Crude Distillation Unit 2. Full line is the true value while the dotted line represents the prediction. 

 

Figure 8: Predictions using the past 30 minutes as input and predicting 30 minutes in the future for some of the 
sensors in Crude Distillation Unit 2. Full line is the true value while the dotted line represents the prediction. 
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4.1.2 Predicting LPG Impurities 
The Tupras refinery is located in Izmit. It began oil production in 1961 and achieved a design 
capacity to process 11.3 million tons of crude oil per year. It receives crude oil from four 
countries: Iran, Iraq, Russia, and Saudi Arabia. The refinery complies with Euro 5 standards, 
producing diesel, gasoline, and LPG. Our work focuses on the LPG debutanizer units. Given 
the previous purification steps, the experts consider there is no much variability in light 
hydrocarbon content regardless the crude oil provenance, and thus changes regarding the 
feedstock provenance were not subject to modelling. 

In order to model the pentanes content at the end of the debutanization process, we created 
a total of 198 features, and then performed feature selection based on features' mutual 
information, to avoid overfitting. To measure the models' performance, we executed a ten-
fold cross-validation, fifty times. Data we used to train the models was provided for two 
debutanizer units. In Figure 9 we show measured pentanes content over time for two 
debutanizer units: Unit A (Fig. A), and Unit B (Fig. B). While the Unit A presents several out-
of-spec events, Unit B has no such events, and thus the classifiers' performance was 
assessed only on events from Unit A. These units have been added to the pipeline at 
different times and are not identical, so the different behaviour is not entirely surprising and 
enforces the conclusion that unit-specific models are needed for successful modelling. 

Best results were obtained when considering the data from both debutanization units to build 
a single model. We attribute such result to the fact that more data provided a greater amount 
of information, enhancing the models' learning process, and thus achieving greater results  

 

Figure 9: Pentanes content measured in debutanizer units. 

We compared the performance of our model’s regression against a baseline forecasting 
pentanes content forecast as the median of past pentane measurements. We found our 
model had a stronger performance, surpassing it for Unit A, and achieving almost the same 
forecast quality for Unit B, when measuring RMSE and MAE.  

When measuring the discrimination power of our classification model, we found it achieved 
a value of 0,7670 for the Area Under the Curve Receiver Operating Characteristics curve, 
with best results for the models built with data from Unit A and Unit B. 



D2.1 Analytics System Requirements and Design Specification V0.1 

 

 

27 

4.2 JEMS 

For each of the chambers (B100, B200, and B300) we trained a feedforward neural network 
predicting the dynamics of sensor measurements. The model predicts values of all sensors 
in the next hour based on the data from the last 5 hours. Before the training of the models 
we imputed datasets using linear interpolation. We have not used the GMM layer for 
imputation yet and that will be our next step. 

We tested each model against the baseline model which always predicts the values from 
the last hour. The mean squared error (MSE) and the mean absolute error (MAE) of each 
of the models are shown in Table 2. We can see that the mean squared error of a 
feedforward neural network is smaller than the baseline’s MSE. That is not the case for the 
mean absolute error because the models were built to optimise the MSE. More experiments 
are still needed to improve the models. 

Table 2: Results of feedforward neural network and baseline models for each chamber. 

 

Figure 10: Measured values of sensor 62 from chamber B100 and its predicted values. 

In Figure 10 we plotted measured sensor values (solid line) and our model’s prediction 
(dashed line). The model was not able to predict the spikes, because they are result of an 
external influence that cannot be predicted (e.g. a change in the settings of the plant). On 
the other hand, in Figure 11 and Figure 12 the model appears to be more successful in 

 MAE MSE 

B100 neural network 1.186 14.138 

B100 baseline 1.092 18.456 

B200 neural network 2.005 30.591 

B200 baseline 1.340 37.402 

B300 neural network 0.962 21.336 

B300 baseline 0.696 21.971 
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predicting sensor values. The exact reason why it does better for these sensors is still 
investigated, but chambers B200 and B300 are later in the pipeline and so more stable. 

 

Figure 11: Measured values of sensor 49 from chamber B200 and its predicted values. 

 

Figure 12: Measured values of sensor 79 from chamber B300 and its predicted values. 

We will continue working on the JEMS use-case. As mentioned already, first step will be to 
use the GMM Layer for imputation. 

4.3 Continental 

Experimentation related to the unusuality detection (Section 2.4) is currently being 
performed upon Continental data sets, described in deliverable D1.1 [2]. 

Experimentation is conducted on following parameters from Continental dataset – Height 1 
value, Height 2 value, Height 3 value, Height 4 value, Angle 1 value, Angle 2 value, Angle 3 
value and Angle 4 value. 
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Data is being segmented based on time-gap between each segment. In essence, there are 
some process parameters that get changed occasionally, and that change introduces said 
time-gaps, as well as changes in process behaviour. 

Parameter standardization of each segment is performed, as well, to ensure that values of 
one segment do not affect model training and inference on other segments. 

4.3.1 Settings 
For the experimentation we used the Neural Network with the structure shown in Figure 13 
below.  

 

 

Figure 13: Neural Network model for the num_of_features = 8 

The process of basic experimentation (training and validation of single model) can be split into 

following tasks (shown also in Figure 14): 

• Split the data into training, validation and test parts; 

• Standardize the training data set; 

• Standardize the validation data set, using mean and standard deviation of the training data 

set; 

• Standardize the test data set, using mean and standard deviation of the initial data; 

• Train the model on training data set, validating it with validation data set; 

• Calculate the thresholds based on the reconstruction errors of validation data set; 

• Compare the results of validation/test data set with the results of MEWMA performed on the 

same data set. 

• Use test data set to compare the results of ensemble learning models and basic model. 
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Figure 14: Continental Experimentation process. 

In addition to the basic model training, we are employing ensemble learning techniques, explained 
in Section 2.4.5, and comparing them to the basic model using the test data set. 

4.3.2 Results 
Depending on the unusuality zone, we get between 30% and 70% match between our model 
and MEWMA. 

Regarding comparison of multiple models trained on different parts of the data set, we get 
low number of unique unusual instances from all models, relative to the average number of 
unusual instances each model outputs individually. This means that there is a high 
percentage of matches from model to model, which looks promising. 

For one of the tests, the number of unique instances classified as unusual was 350, with an 
average number of instances classified as unusual per model being 240 for threshold of 2.4 
standard deviations. Out of these 350 instances, 138 were classified as unusual by each 
model and 237 were classified as unusual by at least 6 of them. In addition, comparison 
between pairs of models showed that, on average, there was 70-95% match between 
instances classified as unusual. Total number of models used for said test was 11 and total 
number of outliers in said test found by MEWMA was 181. 

An example of error curve and unusuality zones (2, 2.4 and 3 standard deviations from the 

mean) for one of the validation parts of data set is presented in Figure 15 below. 
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Figure 15: Error curve and unusuality zones. 

Regarding the ensemble learning techniques, we have tried all of them which are mentioned in 
section 2.4.5: 

• Bootstrap aggregating (Bagging) – There is a 1-5% higher matching rate between 

this method and MEWMA, than there is between basic model and MEWMA, with 

voting usually giving slightly better results. Even though there are slight variations 

when it comes to matching rate (+1-5% comparing to the basic model) because of 

the different test data sets being used and the randomness of training/validation data 

set split, the results of an ensemble model are always better than the ones from basic 

model; 

• K-fold aggregating – There is a 1-5% higher matching rate between this method and 

MEWMA, than there is between basic model and MEWMA, with voting usually giving 

slightly better results. Even though there are slight variations when it comes to 

matching rate (+1-5% comparing to the basic model) because of the different test 

data sets being used and the randomness of training/validation data set split, the 

results of an ensemble model are usually better than the ones from basic model. This 

method usually has slightly worse results than the Bootstrap aggregating method; 

• Boosting – There is an occasional improvement, relative to the basic model, 

regarding the comparison with MEWMA, of up to 2%. However, it can happen that 

there is no improvement. Cases where boosting made the model worse are rare and 

can happen. 

Averaging was performed on the reconstruction outputs – i.e., one instance is fed to every 
model and the final result is the average of all models’ outputs for that instance. Threshold 
is calculated based on these average results on the validation data set. 

Voting is implemented such as for each model a threshold is determined that is used to 
classify instances, and if instance is classified/voted for enough times (N/2 + 1, N = number 
of models), then it is anomalous. 
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