

Deliverable D2.2

Analytical Platform for Process Industry

Version
Version 1.0

Lead Partner
JSI

Date
30/10/2021

Project Name
FACTLOG – Energy-aware Factory Analytics for Process Industries

Ref. Ares(2021)6741138 - 02/11/2021

2

Call Identifier
H2020-NMBP-SPIRE-2019

Topic
DT-SPIRE-06-2019 - Digital technologies for improved
performance in cognitive production plants

Project Reference
869951

Start date
November 1st, 2019

Type of Action
IA – Innovation Action

Duration
42 Months

Dissemination Level

X PU Public

 CO Confidential, restricted under conditions set out in the Grant Agreement

 Cl Classified, information as referred in the Commission Decision 2001/844/EC

Disclaimer

This document reflects the opinion of the authors only.

While the information contained herein is believed to be accurate, neither the FACTLOG consortium as a whole, nor any
of its members, their officers, employees or agents make no warranty that this material is capable of use, or that use of the
information is free from risk and accept no liability for loss or damage suffered by any person in respect of any inaccuracy
or omission.

This document contains information, which is the copyright of FACTLOG consortium, and may not be copied, reproduced,
stored in a retrieval system or transmitted, in any form or by any means, in whole or in part, without written permission.
The commercial use of any information contained in this document may require a license from the proprietor of that
information. The document must be referenced if used in a publication.

D2.1 Analytics System Requirements and Design Specification V0.1

3

Executive Summary

This document presents the analytics platform developed in the FACTLOG project for use
in the process industry. The platform analyses the data from the manufacturing systems and
produces insights and predictions which inform the other components. This includes
predicting future states of systems from past sensor readings and machine settings
information; computing the most likely values of missing readings, specialised models of key
infrastructure assets from the pilots such as distillation columns; and identifying and
analysing unusual situations in complex multi-variate datasets.

The methodology section (Section 2) introduces the main concepts on which the platform
tools are based. The stream forecasting problem is framed, where future values of
timeseries is predicted from past observations and possibly contextual data. The approach
based on Artificial Neural Networks is introduced and extended with the capability to impute
missing values in the timeseries in a pre-processing layer. A specialised approach for
modelling distillation columns is presented as they are a common asset in two of the pilots.
Finally, methodology for detecting and analysing unusual situations for the cognitions
process is described.

Implementation details are given in Section 3. The focus is on the description of the API
structure of the Batch Learning Forecasting component. The description includes building
forecasting models and data imputation as well as details regarding deployment of multiple
instances and attaching the models to a messaging queue (i.e. a Kafka stream). A similar
technical description is given for the distillation columns model.

Finally, demonstration scenarios are presented in Section 4. These include example tool
deployments from the Tupras, JEMS and Continental pilots with their input data, model
setup, evaluation setup, and results. Though these deployments are still in active
development, the results achieved show promise.

D2.1 Analytics System Requirements and Design Specification V0.1

4

Revision History

Revision Date Description Organisation

0.1 29/09/2021 Table of contents JSI

0.2 15/10/2021 Sections 2.1, 3 and 4.1.1 JSI

0.3 22/10/2021 Sections 2.2 and 4.2 JSI

0.4 25/10/2021 Sections 2.4 and 4.3 NISSA

0.5 26/10/2021 Sections 2.3, 3.2 and 4.2 JSI

0.6 27/10/2021 Introduction and Executive Summary JSI

1.0 30/10/2021 Final version after internal review NISSA, JSI

D2.1 Analytics System Requirements and Design Specification V0.1

5

Contributors

Organisation Author E-Mail

JSI Aljaž Košmerlj aljaz.kosmerlj@ijs.si

JSI Beno Šircelj beno.sircelj@ijs.si

JSI Bor Brecelj bor.brecelj@gmail.com

JSI Jože Rožanec joze.rozanec@ijs.si

NISSA Nenad Stojanovic Nenad.Stojanovic@nissatech.com

NISSA Branislav Jovicic Branislav.Jovicic@nissatech.com

NISSA Jelena Jakimov Jelena.Jakimov@nissatech.com

mailto:aljaz.kosmerlj@ijs.si
mailto:beno.sircelj@ijs.si
mailto:bor.brecelj@gmail.com
mailto:joze.rozanec@ijs.si
mailto:Nenad.Stojanovic@nissatech.com
mailto:Branislav.Jovicic@nissatech.com
mailto:Jelena.Jakimov@nissatech.com

D2.1 Analytics System Requirements and Design Specification V0.1

6

Table of Contents

Executive Summary ... 3

Revision History .. 4

1 Introduction ... 9

1.1 Purpose and Scope ... 9

1.2 Relation with other Deliverables .. 9

1.3 Structure of the Document ... 9

2 Methodology ... 10

2.1 Stream Forecasting ... 10

2.2 Imputation .. 10

2.3 Modelling Distillation Columns ... 11

2.4 Unusuality Detection .. 12

2.4.1 Basic Approach .. 13

2.4.2 Validation Approach ... 14

2.4.3 Threshold ... 15

2.4.4 Feature Selection/Reduction .. 15

2.4.5 Our Approach – Ensemble Learning Supported Unusuality Detection 16

3 Implementation ... 17

3.1 Batch Learning Forecasting Component ... 17

3.1.1 Architecture .. 17

3.1.2 API Specification .. 18

3.1.3 Running multiple instances: .. 21

3.1.4 Model training and naming ... 21

3.1.5 Kafka specifications .. 22

3.2 Modelling Distillation Columns ... 22

4 Scenarios .. 24

4.1 Tupras ... 24

D2.1 Analytics System Requirements and Design Specification V0.1

7

4.1.1 Predicting Unit State ... 24

4.1.2 Predicting LPG Impurities ... 26

4.2 JEMS ... 27

4.3 Continental .. 28

4.3.1 Settings .. 29

4.3.2 Results ... 30

References ... 32

D2.1 Analytics System Requirements and Design Specification V0.1

8

List of Figures

Figure 1: The GMM layer. .. 11

Figure 2: Unusuality in complex signals. .. 13
Figure 3: An Autoencoder architecture. ... 14
Figure 4: Structure of the neural network used in the component 17
Figure 5: Batch learning forecasting component architecture .. 18
Figure 6: Schematic diagram of the debutanizer column, its sensors, and their integration
towards the forecasting model and the end users. .. 23
Figure 7: Predictions using the past 60 minutes as input and predicting 60 minutes in the
future for some of the sensors in Crude Distillation Unit 2. Full line is the true value while the
dotted line represents the prediction. ... 25
Figure 8: Predictions using the past 30 minutes as input and predicting 30 minutes in the
future for some of the sensors in Crude Distillation Unit 2. Full line is the true value while the
dotted line represents the prediction. ... 25
Figure 9: Pentanes content measured in debutanizer units. .. 26

Figure 10: Measured values of sensor 62 from chamber B100 and its predicted values. .. 27
Figure 11: Measured values of sensor 49 from chamber B200 and its predicted values. .. 28
Figure 12: Measured values of sensor 79 from chamber B300 and its predicted values. .. 28

Figure 13: Neural Network model for the num_of_features = 8 ... 29
Figure 14: Continental Experimentation process. .. 30
Figure 15: Error curve and unusuality zones. .. 31

List of Tables

Table 1: Model prediction accuracy for different input ranges and different horizons. 24
Table 2: Results of feedforward neural network and baseline models for each chamber. . 27

D2.1 Analytics System Requirements and Design Specification V0.1

9

1 Introduction

1.1 Purpose and Scope

This deliverable accompanies the release of the FACTLOG analytics platform and details
the tools included in the platform. Analytics act as the eyes and ears of the FACTLOG
cognitive digital twin, with its tools detecting anomalies in the data and raising alerts when
unusual situations arise. The tools are built using a wide array of machine learning
methodology used to clean, analyse and process the data from manufacturing systems into
actionable alerts and insights. Through those the other components, such as the
optimisation and process modelling services, can be invoked to address the anomalies and
return the system into a desired state.

The document explains the theoretical background for the analytics methods as well as the
technical implementation details and the resulting API structure. The use of the methods
and tools is demonstrated through pilot scenarios where the platform has already been
tested. These are demo deployments and are not yet ready for full production operation but
already show the impact the analytics can have. Future work will improve upon these initial
results.

1.2 Relation with other Deliverables

The most related other deliverable to this one is D2.1, Analytics System Requirements and
Design Specification, where the requirements for the analytics platform were formulated and
the platform architecture was specified.

In future, the platform will be extended with additional capabilities and integrated with other
components, most of which will be covered in Deliverable D3.2, Data Analytics as a
Cognitive Service, and Deliverable D4.4, KG-based Analytics for Process Optimization.

The tools listed in this deliverable will be, to some extent, used in all the pilots and therefore
also have some relation to all the deliverables describing the final deployments.

1.3 Structure of the Document

After the document introduction in Section 1, the theoretical background of the methods
used in the analytics platform are explained in Section 2, with each subsection covering one
of the main methods. Section 3 then explains the implementation details and the API
structure of the forecasting component as well as the model specialised for distillation
columns. Finally, demonstration scenarios for use of the analytics platform tools from a
selection of pilots (Tupras, JEMS and Continental) is detailed in Section 4.

D2.1 Analytics System Requirements and Design Specification V0.1

10

2 Methodology

This section introduces the methodological details of the analytics tools in the FACTLOG
analytics platform.

2.1 Stream Forecasting

The idea of performing forecasting on a stream of data is that we are trying to make
predictions based on a continuous flow of temporally sequential data. Models that make
predictions based on such data must consider enough input from the past to make good
predictions for some time window into the future. The model that performed best in our tests
is an artificial neural network that can be trained to take as input all sensor readings from a
desired time window in the past and predict all sensor readings for a given time in the future.
Such a model can only work if we already have a sufficient learning set of data from the past
and will not work at the very beginning of the data stream.

There is a possibility of concept drift, i.e., an unforeseen change in system dynamics over
time, which can lead to less accurate predictions. In such cases, it would be good if the
model could detect this and update itself. One possibility for such a model would be to use
online machine learning models. This type of model is typically used when the initial data is
unknown or too large to be processed by a batch model such as the feedforward artificial
neural network mentioned earlier. We did not choose to use such a model because our
experiments have shown it is unnecessary and because such models commonly sacrifice a
portion of performance for their capability to learn online. Instead, the model can simply be
re-trained after a period of time with the most recent data.

2.2 Imputation

In both the Tupras and the JEMS use-case the data contains missing values. The most
basic method to solve this issue is to fill all missing values of each feature with its mean or
median value. In Python’s scikit-learn library this method is called SimpleImputer. A more
advanced method from the scikit-learn library is IterativeImputer, which models each feature
as a function of others in a round-robin fashion. More precisely, it learns a regressor for each
feature where input data are the other features. Although IterativeImputer performs better
than SimpleImputer, it is slow which means that it is not suitable for real-time data streams.

We implemented a method described in the paper “Processing of missing data by neural
networks” [1] which we will call GMM Layer. It is a modification of the first layer of a
feedforward neural network. Instead of assigning exact values to missing values in the data,
missing values are modelled with a probability distribution. A mixture of Gaussians (GMM)
is used to model all data points. A data point is represented as a conditional probability
distribution of missing features given known values. The first layer of a feedforward neural
network is modified so that it gets a (possibly degenerate) mixture of Gaussians as an input
and returns expected activation of neurons in that layer (as shown in Figure 1). The
remaining layers are not modified. All parameters of the mixture of Gaussians are trained
together with the neural network.

https://arxiv.org/abs/1805.07405
https://arxiv.org/abs/1805.07405

D2.1 Analytics System Requirements and Design Specification V0.1

11

Figure 1: The GMM layer.

Since the method is a modified first layer of the artificial neural network, it can be included
in a neural network that makes predictions directly. Alternatively, it can be used as an
autoencoder that does only imputation. Autoencoder is a feedforward neural network, which
consists of two parts, encoder, and decoder. Encoder transforms input data into data points
in fewer dimensions, whereas decoder reconstructs the original input. Autoencoder is
trained to produce the output as close to input data as possible. Therefore, its output is
imputed values that can then be used by any method.

The method adds a new hyperparameter, the number of Gaussians which has to be carefully
chosen. Too small values might mean the layer cannot model the data. On the other hand,
too high values may result in a high number of model parameters which increases learning
time. Even though it needs time to learn, the method is suitable for real-time stream setting,
because it can make quick predictions on new data.

2.3 Modelling Distillation Columns

Crude oil is sourced to petroleum refineries from different provenances. Crude oil
characteristics vary from source to source. Thus, different configurations are required
through the oil refinery pipeline to ensure the quality standards are met. One of such
processes is the distillation that treats the inlet to create the Liquefied Petroleum Gas (LPG).
The final mixture such a product usually contains 48% propane, 50% butane, and up to 2%
pentane. Among the processes applied to LPG to remove impurities we find the
debutanization, which removes pentanes. To ensure the final mixture meets the
specification standards, laboratory analysis is performed on samples taken in various stages
of the purification process. Such analyses are performed a few days a week and can take
several hours to complete. This fact favours scenarios where off-specs situations can spread
over time before being detected and adequate measures taken. It is thus important to
provide means towards early pentanes excess detection. A possible solution is the use of
machine learning models to forecast pentane content or off-specification events based on
real-time streamed sensor data.

D2.1 Analytics System Requirements and Design Specification V0.1

12

When modelling the debutanizer columns, we took into account debutanizer unit diagrams
on which details regarding sensors were provided. In particular, we gained insights
regarding their position, type of sensor, and sensor reading values at a particular point in
time. While the debutanizer columns differed regarding their design, we identified two pairs
of temperature and pressure sensors located at the top of the debutanizer unit, close to the
exit and before the condensation unit. Not all data regarding these sensors was available to
us, and thus we limited our models to the input of two sensors: a pressure and temperature
sensor, located at two separated points of the distillation column. We overcome the lack of
multiple sensor inputs with careful featurisation and the results so far indicate this is
sufficient for an operational model. While the sensor readings inform changes in the process,
relationships between pressure and temperature at both points are governed by physical
principles and laws. Additional insights can be obtained given such principles and laws, and
data obtained from the diagrams informing sensor readings for all sensors at a specific point
in time.

Multiple features were created based on physical and chemical principles and laws related
to the distillation process. In particular, we considered the Ideal Gas law equation, combined
gas law equation, the Clausius-Clapeyron relation (to understand the relation between
temperature and pressure at two different points), the Antoine's equation (to compute the
expected saturation pressure of an approximate LPG mixture), and Raoult’s law and Molar
weight equation (to hint on the LPG mixture composition). A full explanation of how these
first-principle laws are used in computing the features and the references to papers
explaining the physics background can be found in an upcoming paper available as a
preprint [6].

We created two models: a regression model to predict pentane content, and a classification
model to predict whether the pentane content was above allowed levels. The regression
model was a Voting Regressor1 that learned from two Catboost2 models with different
optimization objectives: a first model optimizes against the root mean square error (RMSE),
penalizing large errors, while the second one optimizes against mean absolute error (MAE)
to achieve best median performance. Outputs from both models are weighted by the voting
regressor, to create the final forecast. The classification model, on the other side, was a
Catboost classifier with a focal loss, which guides the model's learning process focusing on
such instances that are harder to learn, to achieve superior results. Full details are described
in an upcoming paper currently available as pre-print [6].

2.4 Unusuality Detection

As already described in deliverable D1.2 [3], variation detection is one of the main
processing steps in the realization of the cognition process.

There are mainly two types of variations in multivariate time-series; one type is abnormal
observation values or unusual subsequences within an individual variable, and the other
type is unexpected changes of relationships among multiple variables. The second one is
very important for describing/understanding the behaviour of a system (and cognition). We
consider these variations as unusualities, or unusual system behaviour, as illustrated in

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html
2 https://catboost.ai/

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html
https://catboost.ai/

D2.1 Analytics System Requirements and Design Specification V0.1

13

Figure 2. These are situations where the cognition should be activated since in a general
case, an unusual behaviour must be further processed in the cognition process in order to
know how to react on.

Figure 2: Unusuality in complex signals.

2.4.1 Basic Approach
In this section we present the approach for unusuality detection based on Neural Networks.

An Autoencoder is a type of Neural Networks used to learn efficient data coding in an
unsupervised manner. The aim of an Autoencoder is to learn a representation (encoding)
for a set of data, by training the Neural Network to ignore signal noise. Along with the
reduction side, a reconstructing side is learnt, where the autoencoder tries to generate from
the reduced encoding a representation as close as possible to its original input. Said
characteristics make Autoencoders applicable to dimensionality reduction, information
retrieval, anomaly detection, image processing, machine translation, etc.

Autoencoders consist of three parts – encoder, used to transform input data to
a corresponding code; decoder, used to transform code to its corresponding input; code,
functioning as a gate between encoder and decoder parts (see Figure 3).

D2.1 Analytics System Requirements and Design Specification V0.1

14

Figure 3: An Autoencoder architecture.

This idea for the approach is based on the working principle of Autoencoders and the fact
that Neural Networks fail to properly learn representation of under-balanced data [7].

In essence, if there is significantly lower number of instances of particular class (data type)
in comparison to other classes, a Neural Network will learn its characteristics and
representation poorly, which will result in wrong classifications. In the context of
Autoencoder Neural Networks, this means that the Autoencoder will fail to properly learn
how to encode and decode (reconstruct) its input.

This means that if we use an entire dataset and do not remove anomalous instances, the
Autoencoder should automatically learn the representation of usual data and later
reconstruct it well, because under-balanced anomalous data should not impact training
greatly. On the other hand, anomalous data will not be learned properly and will result in
greater reconstruction errors.

The above stated would work under the assumption that the process from which data
originated is stable and that there is significantly lower number of unusual data compared to
the usual. This stability could be checked with Stability Index method3. If the process is
stable, we can assume there will be few unusual data points and vice versa.

Another way we can check whether the process is stable is to use one of methods for

anomaly detection. If a large percentage (above 15%) of data is anomalous, then we would

not recommend using this method. It can indicate that the process is very unstable and we

cannot be certain of proposed method’s usefulness.

2.4.2 Validation Approach
As we do not have any information which data points (i.e., training instances) are unusual
prior to the training of neural networks, we do not have a proper way of validating our model.

Therefore, we came up with several “semi-validation” methods:

3 https://www.listendata.com/2015/05/population-stability-index.html

https://www.listendata.com/2015/05/population-stability-index.html

D2.1 Analytics System Requirements and Design Specification V0.1

15

1. Comparing the results of our model to the results of outlier detection algorithms. We

do not expect a great matching level of outputs of these algorithms and our model,

because they function differently. However, we expect that there would be a certain

matching level, as outliers fall into the category of something unusual;

2. Manual validation – we would visualize the data set and the results of our model and

perform visual inspection, if that is possible. Usually, there are a lot of features in the

dataset, so manually performing multivariate validation to such extent is nearly

impossible, but some conclusions may be drawn out with this method;

3. Compare multiple models of the same architecture trained on different training and

validation parts of the same data set and see whether their results match, and to what

extent. If the results match, we can assume, and with fair certainty, that our models

perform well. Otherwise, we can assume that there are issues, either with the dataset

or with the model, which should be further inspected.

2.4.3 Threshold
Since we use our model to reconstruct instances, how well the reconstruction was performed
is inferred from comparison of the actual and reconstructed instances. If they differ greatly,
we assume that the instance is unusual, and vice-versa. This raises the question of where
to draw the line between usual and unusual – i.e., how to set up a threshold based on which
some instance is classified as unusual, and make it broadly applicable, as well?

Our approach uses several thresholds. In its essence, this method calculates the standard
deviation of the reconstruction errors, and any instance with error that is located within X or
more standard deviations from the errors mean is considered unusual. In many disciplines
if something is located within 3, or even 2, standard deviations from the mean it is considered
an outlier. Therefore, we decided to use both of these thresholds, and to add one in between,
as well.

This way, we ended up with 3 “unusuality zones”. In essence, we can look at instances
located within the first zone as potentially unusual (that may need further inspection), while
the ones in the last zone as extremely rare, and thus very unusual (from loose to strict
classification).

Since reconstruction errors can follow several different distributions (other than normal), we
cannot approximate the percentage of the data that we classify as unusual, as it can vary
greatly depending on the data set (see 68–95–99.7 rule4). Therefore, we decided to define
percentage zones; i.e., 10%, 5% and 1% of greatest errors will be used to define the
respective thresholds.

2.4.4 Feature Selection/Reduction
The datasets can have a considerable number of features. This number can vary
significantly from case to case. As a consequence, this can make implementation of general
unusuality detection method with neural networks very difficult. Additionally, it makes visual
inspection/manual validation impossible.

4 https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

D2.1 Analytics System Requirements and Design Specification V0.1

16

Therefore, we are considering performing feature selection/reduction5 in order to reduce the
dimensionality and complexity of the problem that needs to be solved.

2.4.5 Our Approach – Ensemble Learning Supported Unusuality Detection
This approach is an extension of the 3rd numbering in Validation approach section. It implies
joint usage of multiple models in order to increase confidence in the final model/algorithm.

In statistics and machine learning, ensemble methods use multiple learning algorithms to
obtain better predictive performance than could be obtained from any of the constituent
learning algorithms alone6.We assume that this would be especially useful for our method,
as we have no prior knowledge about the data sets that this method might be used for. So,
it would be helpful to cover and use entire historical data that we get with multiple models
and implement voting or an average model.

According to a review of the field, we singled out three ensemble learning methods that, can
improve basic approach:

1. Bootstrap aggregating (Bagging) – Using bootstrap sampling7, create n samples with

m instances and train n models with these samples. Validation is performed on the

instances that were left out of the sample. Aggregation is performed either as

averaging or voting;

2. K-fold aggregating – Using k-fold sampling8, create and train k models. Aggregation

is performed either as averaging or voting;

3. Boosting – Run initial training with entire training dataset. Then, based on

reconstruction errors from validation dataset calculate threshold using proposed

method. Use calculated threshold to separate instances with small reconstruction

errors in training dataset. Use said instances to further train the model, i.e., to boost

it, in order to be able to better differentiate between usual and unusual instances.

5 https://en.wikipedia.org/wiki/Feature_selection
6 https://en.wikipedia.org/wiki/Ensemble_learning
7 https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
8 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Ensemble_learning
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

D2.1 Analytics System Requirements and Design Specification V0.1

17

3 Implementation

This section presents the implementation details of the FACTLOG analytics platform. Note
that all the tools follow the loosely coupled architecture presented in the specification in
deliverable D2.1 [4] and can integrate with the other components through the project
messaging queue and orchestration services.

3.1 Batch Learning Forecasting Component

The component enables using external predictive models from PyTorch9 and Scikit Learn10
library (for example, models such as the Random Forest Regressor11) implementation in a
streaming scenario. Fitting, saving, loading and live prediction are enabled. Live predictions
work via Kafka streams in such a way that that feature vectors are read from a Kafka stream
and predictions are written to a Kafka12 stream. In FACTLOG a neural network model was
added enabling prediction of multiple streams using a single model.

The layout of the neural network used in the component is shown in Figure 4. The structure
is a typical feedforward network. An additional hidden layer can be added that can impute
missing data by replacing typical neuron's response in by its expected value using a
Gaussian mixture model (GMM) as presented in Section 2.2.

Figure 4: Structure of the neural network used in the component

3.1.1 Architecture
Separate models are trained for each individual horizon (for how much time in the future do
we want to make predictions). If a different model than the neural network is used, a separate
model needs to be trained for each sensor. These models should be trained first with the

9 https://pytorch.org
10 https://scikit-learn.org
11 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
12 https://kafka.apache.org

https://pytorch.org/
https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://kafka.apache.org/

D2.1 Analytics System Requirements and Design Specification V0.1

18

previously available data and can be updated periodically with a certain number of the latest
measurements. An overview of this component architecture setup is shown in Figure 5.

Figure 5: Batch learning forecasting component architecture

3.1.2 API Specification
The forecasting library is open-source and is freely available on GitHub13.The predictive
model is designed in a decentralized fashion, meaning that several instances (submodels)
will be created and used for each specific sensor and horizon (#submodels = #sensors *
#horizons). Such a decentralized architecture enables parallelization.

Usage:

python main.py [-h] [-c CONFIG] [-f] [-s] [-l] [-p]

Optional parameters:

Configuration file:

Configuration file specifies the Kafka server address, which algorithm to use, prediction
horizons and sensors. Configuration files are stored in src/config/.

13 https://github.com/JozefStefanInstitute/forecasting

Short Long Description

-h --help show help

-c CONFIG --config CONFIG path to config file (example: config.json)

-f --fit learning the model from dataset (in /data/fused)

-s --save save model to file

-l --load load model from file

-p --predict start live predictions (via Kafka)

-w --watchdog start watchdog pinging

https://github.com/JozefStefanInstitute/forecasting

D2.1 Analytics System Requirements and Design Specification V0.1

19

General Parameters:

14 https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

Name Type Default Description

prediction_horizons list(integer) List of prediction horizons (in units
specified in time_offset) for which
the model will be trained to predict
for.

time_offset string H String alias14 to define the data
time offsets. The aliases used in
training and topic names are
lowercase for backwards
compatibility.

sensors list(string) List of sensors for which this
specific instance will train the
models and will be making
predictions.

bootstrap_servers string

or list(string)

 String (or list of host[:port] strings)
that the consumer should contact
to bootstrap initial cluster
metadata.

algorithm string torch String as either a scikit-learn
model constructor with
initialization parameters or a string
torch to train using a pre-defined
neural network using PyTorch with
architecture: [torch.nn.Linear,
torch.nn.ReLU, torch.nn.Linear],

evaluation_period integer 512 Define time period (in defined time
offset that is hours by default) for
which the model will be evaluated
during live predictions (evaluations
metrics added to output record).

evaluation_split_point float 0.8 Define training and testing splitting
point in the dataset, for model
evaluation during learning phase
(fit takes twice as long time).

retrain_period integer None The number of received samples
after which the model will be re-
trained. This is an optional
parameter. If it is not specified no
re-training will be done.

samples_for_retrain integer None The number of samples that will
be used for re-training. If
retrain_period is not specified this

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

D2.1 Analytics System Requirements and Design Specification V0.1

20

PyTorch parameters:

GMM layer parameters:

15 https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
16 https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html

parameter will be ignored. This is
an optional parameter. If it is not
specified (and retrain_period is)
the re-train will be done on all
samples received since the
component was started.

watchdog_path string None Watchdog path.

watchdog_interval integer 60 Delay in seconds between each
Watchdog ping.

watchdog_url string localhost Watchdog url.

watchdog_port integer 3001 Watchdog port.

Name Type Default Description

learning_rate float 4E-5 Learning rate for the torch model.

batch_size integer 64 Size of training batches for torch model.

training_rounds integer 100 Training rounds for torch model.

num_workers integer 1 Number of workers for torch model.

Name Type Default Description

gmm_layer boolean False If True, the GMM layer is added to the model.

initial_imputer string simple Options are simple or iterative which uses either
sklearn SimpleImputer15 or IterativeImputer16.

max_iter integer 15 If the iterative imputer is chosen, this argument
defines the maximum number of iterations for it.

n_gmm integer 5 Number of components of GaussianMixture. If
n_gmm is set to -1, then all values between
min_n_gmm and max_n_gmm are checked and the
one with the best BIC score is chosen.

min_n_gmm integer 1 Minimum number of components for GMM if search is
enabled.

max_n_gmm integer 10 Maximum number of components for GMM if search
is enabled.

gmm_seed integer None Random state seed for GMM.

verbose boolean False If set to True, the progress and results of n_gmm
parameter search is displayed.

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html

D2.1 Analytics System Requirements and Design Specification V0.1

21

Example of config file:

3.1.3 Running multiple instances:
The forecasting instance is loosely coupled to the system via Kafka streaming API, therefore
it can be started as multiple processes (simple parallelization). For this purpose, we can use
start_cluster.sh script with the same input parameters as main.py. Cluster is defined in a
separate config file cluster.json. The script runs several instances of main.py in a tmux
session (named modeling_cluster), each under a different window.

Usage:

bash start_cluster.sh [-f] [-s] [-l] [-p]

Configuration file:

Specify which sensors should be processed by a specific instance in a separate line.

Example of cluster configuration file:

Alternatively, process managers like PM2 or pman would be a better fit for the task than tmux.

3.1.4 Model training and naming
• Training data: all the training files should be stored in a subfolder called

/data/fused. Data should be stored as json objects per line (e.g. {"timestamp":

1459926000, "ftr_vector": [1, 2, 3]}). Separate file for each sensor and
prediction horizon. Files should be named the same as input Kafka topics, that is
{sensor}_{horizon}{time_offset.lower()} (e.g. sensor1_3h.json).The target
sensor is the first element of ftr_vector.

If we want to train a model that uses data from the last 60 minutes, we should make
sure that the first reading is the target sensor at the specified timestamp and all other

{
 "bootstrap_servers": "127.0.0.1:9092",
 "algorithm":
"sklearn.ensemble.RandomForestRegressor(n_estimators=100, n_jobs=16)",
 "evaluation_period": 72,
 "evaluation_split_point": 0.8,
 "prediction_horizons": [1, 2, 3],
 "sensors": ["test", "test2"],
 "retrain_period": 100,
 "samples_for_retrain": 5000
}

["N1", "N2"]
["N3", "N4"]
["N5", "N6"]
["N7", "N8"]

D2.1 Analytics System Requirements and Design Specification V0.1

22

values are all sensor readings for every minute up to 60 minutes in the past. When
we make predictions later, we also need to provide a vector with such a structure to
the component.

• Re-training data: all the re-training data (if re-training is specified) will be stored in a
subfolder called /data/retrain_data in the same form as training data. Separate files
will be made for each sensor and prediction horizon. The names of the files will be in
the following form: {sensor}_{horizon}{time_offset.lower()}_retrain.json (eg.
sensor1_3h_retrain.json).

• Models: all the models are stored in a subfolder called /models. Each sensor and
horizon has its own model (with the exception of the neural net model, which covers
multiple sensors. The name of the models is composed of sensor name and
prediction horizon, model_{sensor}_{horizon}{time_offset.lower()} (e.g.
model_sensor1_3h).

3.1.5 Kafka specifications

• Input Kafka topic: The names of input Kafka topics on which the prototype is
listening for live data should be in the same format as training data file names, that
is features_{sensor}_{horizon}{time_offset.lower()}.

• Output Kafka topic: Predictions are sent on different topics based on a sensor
names, that is {sensor} (e.g. sensor1).

• Input data structure: JSON file with the following structure. The feature vector
specifies the composition of the data row.

• Output data structure: JSON file with following structure

3.2 Modelling Distillation Columns

To implement the models forecasting pentanes content at the end of the LPG debutanization
process we used the scikit-learn (sklearn) and Catboost17 [5] libraries. In the deployment,
the models consume real-time sensor data streams published to a Kafka topic. Each Kafka
message contains information regarding the sensor ID, and based on metadata, it is known

17 https://catboost.ai/

{
 "ftr_vector": array (a feature vector) of values,
 "timestamp": timestamp as strings in the Unix timestamp format
}

{
 "stampm": timestamp as strings in the Unix timestamp format,
 "value": prediction,
 "sensor_id": target sensor,
 "horizon": target horizon,
 "predictability": sklearn r2 score
}

https://catboost.ai/

D2.1 Analytics System Requirements and Design Specification V0.1

23

to which debutanizer unit it corresponds. When a new sensor reading arrives, a forecast is
made and published with metadata regarding the latest timestamp of the sensor reading,
and the debutanizer unit to which the forecast corresponds.

The models were developed with widely used open source libraries given the flexibility and
quality of implementation they provide for particular machine learning models. These
libraries are widely used in the industry, enhancing the trust regarding their implementation
in light of the final product. We did not implement feature creation with the library developed
by JSI (described above) due to domain-specific requirements.

In Figure 6 we depict the models' integration. Sensor readings are obtained from the
debutanizer column and streamed to a specific Kafka topic, with metadata regarding the
timestamp of the reading, the particular sensor ID, and value. On the deployment instance,
those values are fed to the model to produce a forecast. A lookup is performed to retrieve
meaningful metadata and enrich the message before publishing it to the forecasts' Kafka
topic.

Figure 6: Schematic diagram of the debutanizer column, its sensors, and their integration towards the
forecasting model and the end users.

D2.1 Analytics System Requirements and Design Specification V0.1

24

4 Scenarios

This Section presents scenarios from the FACTLOG pilots demonstrating the use of
analytics tools. Note that these are demo cases and do not represent final production
versions. Details on the pilots themselves can be found in FACTLOG deliverable D1.1 [2].

4.1 Tupras

4.1.1 Predicting Unit State
The data on which we trained and evaluated the models came from Crude Distillation Unit
2 in the Tupras pipeline. The data had any duplicated time readings removed and missing
values were imputed using the sklearn iterative imputer18. The generated dataset was split
into the first 80%, which was used to train the model, and the last 20%, which was used to
evaluate performance. The models we created had different number of past values used as
the input range and predicted for different prediction horizons in the future.

The input value in the table indicates for how many minutes in the past the data was given
to the model. Data was collected in minute intervals, so the value 60 means that all sensor
readings for every minute in the last hour were used as input. The prediction horizon
indicates for how many minutes in the future all sensor readings are predicted.

The metrics displayed are MAE (Mean Absolute Error) and MSE (Mean Square Error).

Table 1: Model prediction accuracy for different input ranges and different horizons.

Results shown in Table 1 are as can be expected – the best accuracy is achieved by models
predicting for the near future and giving the model more information by increasing input
range also increases the prediction accuracy. The impact of both factors is illustrated in

18 https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html

Input range [min]
Prediction

horizon[min] MAE MSE

5 1 3.703 179.67

20 1 4.891 204.54

5 15 6.684 399.55

20 15 9.105 571.04

5 60 8.246 552.97

20 60 9.676 594.82

60 60 9.844 638.30

https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html

D2.1 Analytics System Requirements and Design Specification V0.1

25

Figure 7: Predictions using the past 60 minutes as input and predicting 60 minutes in the future for some of the

sensors in Crude Distillation Unit 2. Full line is the true value while the dotted line represents the prediction.

Figure 8: Predictions using the past 30 minutes as input and predicting 30 minutes in the future for some of the
sensors in Crude Distillation Unit 2. Full line is the true value while the dotted line represents the prediction.

D2.1 Analytics System Requirements and Design Specification V0.1

26

4.1.2 Predicting LPG Impurities
The Tupras refinery is located in Izmit. It began oil production in 1961 and achieved a design
capacity to process 11.3 million tons of crude oil per year. It receives crude oil from four
countries: Iran, Iraq, Russia, and Saudi Arabia. The refinery complies with Euro 5 standards,
producing diesel, gasoline, and LPG. Our work focuses on the LPG debutanizer units. Given
the previous purification steps, the experts consider there is no much variability in light
hydrocarbon content regardless the crude oil provenance, and thus changes regarding the
feedstock provenance were not subject to modelling.

In order to model the pentanes content at the end of the debutanization process, we created
a total of 198 features, and then performed feature selection based on features' mutual
information, to avoid overfitting. To measure the models' performance, we executed a ten-
fold cross-validation, fifty times. Data we used to train the models was provided for two
debutanizer units. In Figure 9 we show measured pentanes content over time for two
debutanizer units: Unit A (Fig. A), and Unit B (Fig. B). While the Unit A presents several out-
of-spec events, Unit B has no such events, and thus the classifiers' performance was
assessed only on events from Unit A. These units have been added to the pipeline at
different times and are not identical, so the different behaviour is not entirely surprising and
enforces the conclusion that unit-specific models are needed for successful modelling.

Best results were obtained when considering the data from both debutanization units to build
a single model. We attribute such result to the fact that more data provided a greater amount
of information, enhancing the models' learning process, and thus achieving greater results

Figure 9: Pentanes content measured in debutanizer units.

We compared the performance of our model’s regression against a baseline forecasting
pentanes content forecast as the median of past pentane measurements. We found our
model had a stronger performance, surpassing it for Unit A, and achieving almost the same
forecast quality for Unit B, when measuring RMSE and MAE.

When measuring the discrimination power of our classification model, we found it achieved
a value of 0,7670 for the Area Under the Curve Receiver Operating Characteristics curve,
with best results for the models built with data from Unit A and Unit B.

D2.1 Analytics System Requirements and Design Specification V0.1

27

4.2 JEMS

For each of the chambers (B100, B200, and B300) we trained a feedforward neural network
predicting the dynamics of sensor measurements. The model predicts values of all sensors
in the next hour based on the data from the last 5 hours. Before the training of the models
we imputed datasets using linear interpolation. We have not used the GMM layer for
imputation yet and that will be our next step.

We tested each model against the baseline model which always predicts the values from
the last hour. The mean squared error (MSE) and the mean absolute error (MAE) of each
of the models are shown in Table 2. We can see that the mean squared error of a
feedforward neural network is smaller than the baseline’s MSE. That is not the case for the
mean absolute error because the models were built to optimise the MSE. More experiments
are still needed to improve the models.

Table 2: Results of feedforward neural network and baseline models for each chamber.

Figure 10: Measured values of sensor 62 from chamber B100 and its predicted values.

In Figure 10 we plotted measured sensor values (solid line) and our model’s prediction
(dashed line). The model was not able to predict the spikes, because they are result of an
external influence that cannot be predicted (e.g. a change in the settings of the plant). On
the other hand, in Figure 11 and Figure 12 the model appears to be more successful in

 MAE MSE

B100 neural network 1.186 14.138

B100 baseline 1.092 18.456

B200 neural network 2.005 30.591

B200 baseline 1.340 37.402

B300 neural network 0.962 21.336

B300 baseline 0.696 21.971

D2.1 Analytics System Requirements and Design Specification V0.1

28

predicting sensor values. The exact reason why it does better for these sensors is still
investigated, but chambers B200 and B300 are later in the pipeline and so more stable.

Figure 11: Measured values of sensor 49 from chamber B200 and its predicted values.

Figure 12: Measured values of sensor 79 from chamber B300 and its predicted values.

We will continue working on the JEMS use-case. As mentioned already, first step will be to
use the GMM Layer for imputation.

4.3 Continental

Experimentation related to the unusuality detection (Section 2.4) is currently being
performed upon Continental data sets, described in deliverable D1.1 [2].

Experimentation is conducted on following parameters from Continental dataset – Height 1
value, Height 2 value, Height 3 value, Height 4 value, Angle 1 value, Angle 2 value, Angle 3
value and Angle 4 value.

D2.1 Analytics System Requirements and Design Specification V0.1

29

Data is being segmented based on time-gap between each segment. In essence, there are
some process parameters that get changed occasionally, and that change introduces said
time-gaps, as well as changes in process behaviour.

Parameter standardization of each segment is performed, as well, to ensure that values of
one segment do not affect model training and inference on other segments.

4.3.1 Settings
For the experimentation we used the Neural Network with the structure shown in Figure 13
below.

Figure 13: Neural Network model for the num_of_features = 8

The process of basic experimentation (training and validation of single model) can be split into

following tasks (shown also in Figure 14):

• Split the data into training, validation and test parts;

• Standardize the training data set;

• Standardize the validation data set, using mean and standard deviation of the training data

set;

• Standardize the test data set, using mean and standard deviation of the initial data;

• Train the model on training data set, validating it with validation data set;

• Calculate the thresholds based on the reconstruction errors of validation data set;

• Compare the results of validation/test data set with the results of MEWMA performed on the

same data set.

• Use test data set to compare the results of ensemble learning models and basic model.

D2.1 Analytics System Requirements and Design Specification V0.1

30

Figure 14: Continental Experimentation process.

In addition to the basic model training, we are employing ensemble learning techniques, explained
in Section 2.4.5, and comparing them to the basic model using the test data set.

4.3.2 Results
Depending on the unusuality zone, we get between 30% and 70% match between our model
and MEWMA.

Regarding comparison of multiple models trained on different parts of the data set, we get
low number of unique unusual instances from all models, relative to the average number of
unusual instances each model outputs individually. This means that there is a high
percentage of matches from model to model, which looks promising.

For one of the tests, the number of unique instances classified as unusual was 350, with an
average number of instances classified as unusual per model being 240 for threshold of 2.4
standard deviations. Out of these 350 instances, 138 were classified as unusual by each
model and 237 were classified as unusual by at least 6 of them. In addition, comparison
between pairs of models showed that, on average, there was 70-95% match between
instances classified as unusual. Total number of models used for said test was 11 and total
number of outliers in said test found by MEWMA was 181.

An example of error curve and unusuality zones (2, 2.4 and 3 standard deviations from the

mean) for one of the validation parts of data set is presented in Figure 15 below.

D2.1 Analytics System Requirements and Design Specification V0.1

31

Figure 15: Error curve and unusuality zones.

Regarding the ensemble learning techniques, we have tried all of them which are mentioned in
section 2.4.5:

• Bootstrap aggregating (Bagging) – There is a 1-5% higher matching rate between

this method and MEWMA, than there is between basic model and MEWMA, with

voting usually giving slightly better results. Even though there are slight variations

when it comes to matching rate (+1-5% comparing to the basic model) because of

the different test data sets being used and the randomness of training/validation data

set split, the results of an ensemble model are always better than the ones from basic

model;

• K-fold aggregating – There is a 1-5% higher matching rate between this method and

MEWMA, than there is between basic model and MEWMA, with voting usually giving

slightly better results. Even though there are slight variations when it comes to

matching rate (+1-5% comparing to the basic model) because of the different test

data sets being used and the randomness of training/validation data set split, the

results of an ensemble model are usually better than the ones from basic model. This

method usually has slightly worse results than the Bootstrap aggregating method;

• Boosting – There is an occasional improvement, relative to the basic model,

regarding the comparison with MEWMA, of up to 2%. However, it can happen that

there is no improvement. Cases where boosting made the model worse are rare and

can happen.

Averaging was performed on the reconstruction outputs – i.e., one instance is fed to every
model and the final result is the average of all models’ outputs for that instance. Threshold
is calculated based on these average results on the validation data set.

Voting is implemented such as for each model a threshold is determined that is used to
classify instances, and if instance is classified/voted for enough times (N/2 + 1, N = number
of models), then it is anomalous.

D2.1 Analytics System Requirements and Design Specification V0.1

32

References

References are listed in a numbered list, ordered alphabetically as shown in the Reference
Section. References are denoted in the text as cross links, e.g. Berners-Lee, T. (1999).
Weaving the Web. San Francisco: Harper. or “Free/Libre and Open Source Software:
Survey and Study - FLOSS” Deliverable D18: FINAL REPORT FLOSS project, June 2002,
. Be careful when updating your reference list because Word sometimes destroys the
cross links.

[1] Marek Smieja, Łukasz Struski, Jacek Tabor, Bartosz Zieliński, and Przemysław Spurek.

2018. Processing of missing data by neural networks. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems (NIPS'18). Curran

Associates Inc., Red Hook, NY, USA, 2724–2734.

[2] FACTLOG – Energy-aware Factory Analytics for Process Industry, Deliverable D1.1

“Reference Scenarios, KPIs and Datasets”.

[3] FACTLOG – Energy-aware Factory Analytics for Process Industry, Deliverable D1.2

“Cognitive Factory Framework”.

[4] FACTLOG – Energy-aware Factory Analytics for Process Industry, Deliverable D2.1

“Analytics System Requirements and Design Specification”.

[5] Prokhorenkova, Liudmila, et al. "CatBoost: unbiased boosting with categorical

features." arXiv preprint arXiv:1706.09516 (2017).

[6] Rožanec, J.M.; Trajkova, E.; Lu, J.; Sarantinoudis, N.; Arampatzis, G.; Eirinakis, P.;

Mourtos, I.; Onat, M.K.; Ataç Yilmaz, D.; Košmerlj, A.; Kenda, K.; Fortuna, B.;

Mladenić, D. Cyber-Physical LPG Debutanizer Distillation Columns: Machine

Learning-Based Soft Sensors for Product Quality Monitoring. Preprints 2021,

2021100364 (doi: 10.20944/preprints202110.0364.v1).

[7] Welzer, T., Eder, J., Podgorelec, V., & Kamišalić Latifić, A. (Eds.). (2019). Advances

in Databases and Information Systems. Lecture Notes in Computer Science.

doi:10.1007/978-3-030-28730-6.

